Control System Toolbox 8 Reference

MATLAB

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www. mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
Bug reports
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000 (Phone)
508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Control System Toolbox Reference

© COPYRIGHT 2001-2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

June 2001
July 2002
June 2004
March 2005
September 2005
March 2006
September 2006
March 2007

Online only Online only

New for Version 5.1 (Release 12.1)
Revised for Version 5.2 (Release 13)
Revised for Version 6.0 (Release 14)
Revised for Version 6.2 (Release 14SP2)
Revised for Version 6.2.1 (Release 14SP3)
Revised for Version 7.0 (Release 2006a)
Revised for Version 7.1 (Release 2006b)
Revised for Version 8.0 (Release 2007a)

Functions - By Category

1

General 1-3
Creating Linear Models 1-3
Data Extraction 1-3
Conversions 1-4
System Interconnections 1-4
System Gain and Dynamics 1-5
Time Domain Analysis 1-6
Frequency Domain Analysis 1-6
Classical Design 1-7
Compensator Design 1-7
LQR/LQG Design 1-8
State-Space Models 1-8
Frequency Response Data (FRD) Models 1-9
Time Delays 1-10
Model Dimensions and Characteristics 1-10
Overloaded and Arithmetic Operators 1-11
Matrix Equation Solvers 1-12
Command-Line Plot Customization 1-12
Functions - Alphabetical List
2
Block Reference
3
Introduction 3-2
Index

Functions - By Category

General (p. 1-3)
Creating Linear Models (p. 1-3)
Data Extraction (p. 1-3)
Conversions (p. 1-4)
System Interconnections (p. 1-4)
System Gain and Dynamics (p. 1-5)

Time Domain Analysis (p. 1-6)
Frequency Domain Analysis (p. 1-6)

Classical Design (p. 1-7)

Compensator Design (p. 1-7)

LQR/LQG Design (p. 1-8)

State-Space Models (p. 1-8)
Frequency Response Data (FRD)
Models (p. 1-9)
Time Delays (p. 1-10)

Model Dimensions and
Characteristics (p. 1-10)

General purpose functions
Create LTI SISO and MIMO models
Retrieve data from LTI objects
Convert between model formats
Connect models
Retrieve information about system gain and dynamics
Analyze models in the time domain
Analyze models in the frequency domain
Implement classical control design techniques
Implement basic control design techniques
Implement
linear-quadtratic-regulator/linear-quadratic-Gaussian techniques
Create and manipulate SS models
Create and manipulate FRD models

Specify and manipulate model time delays
Extract information about models

Overloaded and Arithmetic
Operators (p. 1-11)
Matrix Equation Solvers (p. 1-12)
Command-Line Plot Customization (p. 1-12)

Use arithmetic operators to connect and manipulate models

Solve Lyapunov and Riccati equations

Customize plots from the command line

General

ctrlpref	Set Control System Toolbox preferences
ltimodels	Help on LTI models
ltiprops	Help on LTI model properties

Creating Linear Models

```
dss
filt
frd
set
tf
zpk
```


Data Extraction

```
dssdata
frdata
get
ssdata
```

Specify descriptor state-space models
Specify discrete transfer functions in DSP format

Create or convert to frequency-response data models Set or modify LTI model properties Create or convert to transfer function model

Create or convert to zero-pole-gain model

dssdata	Extract descriptor state-space data
frdata	Access data for frequency response data (FRD) object
get	Access LTI property values
ssdata	Access state-space model data

tfdata
zpkdata

Access transfer function data Access zero-pole-gain data

Conversions

c2d
chgunits
d2c
d2d
frd
ss
tf
zpk

Convert from continuous- to discrete-time models

Change frequency units of FRD model
Convert from discrete- to continuous-time models
Resample discrete-time LTI model or add input delay
Create or convert to frequency-response data models
Specify state-space models or convert LTI model to state space

Create or convert to transfer function model

Create or convert to zero-pole-gain model

System Interconnections

append
connect

Group LTI models by appending their inputs and outputs
Arbitrary interconnection of LTI models

```
feedback
lft
parallel
series
```

Feedback connection of two LTI models

Generalized feedback interconnection of two LTI models (Redheffer star product)

Parallel connection of two LTI models

Series connection of two LTI models

System Gain and Dynamics

bandwidth
damp
dcgain
dsort
esort
iopzmap
modsep
norm
pole
pzmap
stabsep

Frequency response bandwidth
Natural frequency and damping of system poles

Low-frequency (DC) gain of LTI system

Sort discrete-time poles by magnitude

Sort continuous-time poles by real part

Plot pole-zero map for I/O pairs of LTI model

Region-based modal decomposition Compute LTI model norm

Compute poles of LTI system
Compute pole-zero map of LTI models

Stable/unstable decomposition of LTI model

Time Domain Analysis

covar
gensig
impulse
initial
lsim
lsiminfo
ltiview
step
stepinfo

Frequency Domain Analysis

allmargin
bode
bodemag
evalfr
freqresp

Output and state covariance of system driven by white noise

Generate test input signals for lsim
Impulse response of LTI model
initial condition response of state-space model

Simulate LTI model responses to arbitrary inputs
Compute linear response characteristics

LTI Viewer for LTI system response analysis
Step response of LTI systems
Compute step response characteristics

All crossover frequencies and corresponding stability margins Bode diagram of frequency response
Bode magnitude response of LTI models

Evaluate frequency response at given frequency

Frequency response over frequency grid

```
ltiview
margin
nichols
nyquist
sigma
```


Classical Design

rlocus
sisotool

Compensator Design

acker	Pole placement design for single-input systems
estim	Form state estimator given estimator gain
place	Pole placement design reg
Form regulator given state-feedback and estimator gains	

LQR/LQG Design

augstate	Append state vector to output vector
dlar	Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system
kalman	Design continuous- or discrete-time Kalman estimator
kalmd	Design discrete Kalman estimator for continuous plant
lqgreg	Form LQG regulator given state-feedback gain and Kalman estimator
lqr	Linear-quadratic (LQ) state-feedback regulator for state-space system
lqra	Design discrete linear-quadratic (LQ) regulator for continuous plant
lqry	Form linear-quadratic (LQ) state-feedback regulator with output weighting

State-Space Models

balreal
canon
ctrb
gram
margin

Gramian-based input/output balancing of state-space realizations

State-space canonical realization
Controllability matrix
Controllability and observability grammians

Gain and phase margins and associated crossover frequencies

minreal	Minimal realization or pole-zero cancelation
modred	Model order reduction ngrid
Superimpose Nichols chart on nichols plot	
nyquist	Nichols plot of LTI models
obsv	Nyquist plot of LTI models
sminreal	Observability matrix
ss2ss	Perform model reduction based on structure
ssbal	State coordinate transformation for state-space model
	Balance state-space model using diagonal similarity transformation

Frequency Response Data (FRD) Models

abs
chgunits
fcat
fnorm
fselect
imag
interp
real

Entrywise magnitude of frequency response

Change frequency units of FRD model

Concatenate FRD models along frequency dimension

Pointwise peak gain of FRD model
Select frequency points or range in FRD model

Imaginary part of FRD model
Interpolate FRD model
Real part of frequency response for FRD model

Time Delays

delay2z	Replace delays of discrete-time TF, SS, or ZPK models by poles at $z=0$, or replace delays of FRD models by phase shift
delayss	Create state-space models with delayed terms
getdelaymodel	State-space representation of internal delays
hasdelay	True for LTI model with time delays
pade	Padé approximation of model with time delays
totaldelay	Total combined I/O delays for LTI model

Model Dimensions and Characteristics

isct, isdt	Determine whether LTI model is continuous or discrete
isempty	Determine whether LTI model is empty
isproper	Determine whether LTI model is proper
issiso	Determine whether LTI model is single-input/single-output (SISO)
ndims	Provide number of dimensions of LTI model or LTI array

reshape
size

Change shape of LTI array
Provide output/input/array dimensions of LTI model, model order of TF, SS, and ZPK model, and number of frequencies of FRD model

Overloaded and Arithmetic Operators

```
+ and -
*
.*
\
/
^
,
.
[..]
conj
inv
stack
```

Add and subtract systems (parallel connection)

Multiply systems (series connection)
Element-by-element multiplication
Left divide - sys1 \sys2 means inv(sys1)*sys2

Right divide - sys1/sys2 means sys1*inv(sys2)

Powers of given system
Pertransposition
Transposition of input/output map
Concatenate models along inputs or outputs

Complex conjugation of model coefficients

Invert LTI systems
Build LTI array by stacking LTI models or LTI arrays along array dimensions

Matrix Equation Solvers

```
care
dare
dlyap
dlyapchol
gcare
gdare
lyap
lyapchol
```


Command-Line Plot Customization

bodeplot
getoptions
hsvplot
impulseplot

Plot Bode frequency response and return plot handle

Return @PlotOptions handle or plot options property

Plot Hankel singular values and return plot handle

Plot impulse response and return plot handle
initialplot
iopzplot
lsimplot
nicholsplot
nyquistplot
pzplot
rlocusplot
setoptions
sigmaplot
stepplot

Plot initial condition response and return plot handle

Plot pole-zero map for I/O pairs and return plot handle

Simulate LTI model responses to arbitrary inputs and return plot handle

Plot Nichols frequency responses and return plot handle

Plot Nyquist frequency responses and return plot handle

Plot pole-zero map of LTI model and return plot handle
Plot root locus and return plot handle

Set plot options for response plot Plot singular values of frequency response and return plot handle Plot step response of LTI systems and return plot handle

1 Functions - By Category

Functions - Alphabetical List

Purpose Entrywise magnitude of frequency response

Syntax absfrd = abs(sys)

Description absfrd = abs(sys) computes the magnitude of the frequency response contained in the FRD model sys. For MIMO models, the magnitude is computed for each entry. The output absfrd is an FRD object containing the magnitude data across frequencies.

See Also
bodemag, sigma, frd/imag, frd/real, fnorm

Purpose	Pole placement design for single-input systems
Syntax	$k=\operatorname{acker}(\mathrm{A}, \mathrm{b}, \mathrm{p})$
Description	$k=\operatorname{acker}(\mathrm{A}, \mathrm{b}, \mathrm{p})$
	Given the single-input system
	$\dot{x}=A x+b u$
	and a vector p of desired closed-loop pole locations, acker ($\mathrm{A}, \mathrm{b}, \mathrm{p}$) uses Ackermann's formula [1] to calculate a gain vector k such that the state feedback $u=-k x$ places the closed-loop poles at the locations p . In other words, the eigenvalues of $A-b k$ match the entries of p (up to ordering). Here A is the state transmitter matrix and b is the input to state transmission vector.
	You can also use acker for estimator gain selection by transposing the matrix A and substituting c^{\prime} for b when $y=c x$ is a single output.
	$\mathrm{l}=\operatorname{acker}\left(\mathrm{a}^{\prime}, \mathrm{c}^{\prime}, \mathrm{p}\right) .{ }^{\prime}$
Limitations	acker is limited to single-input systems and the pair (A, b) must be controllable.
	Note that this method is not numerically reliable and starts to break down rapidly for problems of order greater than 5 or for weakly controllable systems. See place for a more general and reliable alternative.
References	[1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.
See Also	lqr, place, rlocus

allmargin

Purpose All crossover frequencies and corresponding stability margins

```
Syntax
S = allmargin(sys)
s = allmargin(mag,phase,w,ts)
```

Description

See Also ltimodels, ltiview, margin

Purpose

Group LTI models by appending their inputs and outputs

Syntax

Description
sys = append(sys1,sys2,...,sysN)
sys $=$ append(sys 1, sys $2, \ldots$, sysN)
append appends the inputs and outputs of the LTI models sys $1, \ldots$, sysN to form the augmented model sys depicted below.

sys
For systems with transfer functions $H_{1}(s), \ldots, H_{N}(s)$, the resulting system sys has the block-diagonal transfer function

$$
\left[\begin{array}{cccc}
H_{1}(s) & 0 & . & 0 \\
0 & H_{2}(s) & . & : \\
: & . & . & 0 \\
0 & . . & 0 & H_{N}(s)
\end{array}\right]
$$

For state-space models sys1 and sys2 with data $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and ($A_{2}, B_{2}, C_{2}, D_{2}$), append(sys1, sys2) produces the following state-space model.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{aligned}
$$

Arguments
The input arguments sys1,..., sysN can be LTI models of any type. Regular matrices are also accepted as a representation of static gains, but there should be at least one LTI object in the input list. The LTI models should be either all continuous, or all discrete with the same sample time. When appending models of different types, the resulting type is determined by the precedence rules (see Precedence Rules for details).

There is no limitation on the number of inputs.

Example

The commands

```
sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)
```

produce the state-space model

sys

$\mathrm{a}=$

	x1	x2
x1	0	0
x2	0	1.00000

b =

	u 1	u 2	$\mathrm{u3}$
$\times 1$	1.00000	0	0
$\times 2$	0	0	2.00000

C $=$

	$x 1$	x2
y1	1.00000	0
y2	0	0
y3	0	3.00000

$d=$

	u1	u2	u3
y1	0	0	0
y2	0	10.00000	0
y3	0	0	4.00000

Continuous-time system.

See Also

connect, feedback, parallel, series

Purpose Append state vector to output vector

Syntax
 asys = augstate(sys)

Description

asys = augstate(sys)
Given a state-space model sys with equations

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

(or their discrete-time counterpart), augstate appends the states x to the outputs y to form the model

$$
\begin{aligned}
\dot{x} & =A x+B u \\
{\left[\begin{array}{l}
y \\
x
\end{array}\right] } & =\left[\begin{array}{l}
C \\
I
\end{array}\right] x+\left[\begin{array}{l}
D \\
0
\end{array}\right] u
\end{aligned}
$$

This command prepares the plant so that you can use the feedback command to close the loop on a full-state feedback $u=-K x$.

Limitation Because augstate is only meaningful for state-space models, it cannot be used with TF, ZPK or FRD models.

See Also feedback, parallel, series

Purpose

Gramian-based input/output balancing of state-space realizations

Syntax

Description
[sysb,g] = balreal(sys)
[sysb,g,T,Ti] = balreal(sys)
[sysb,g] = balreal(sys) computes a balanced realization sysb
for the stable portion of the LTI model sys. balreal handles both continuous and discrete systems. If sys is not a state-space model, it is first and automatically converted to state space using ss.
For stable systems, sysb is an equivalent realization for which the controllability and observability Gramians are equal and diagonal, their diagonal entries forming the vector G of Hankel singular values. Small entries in G indicate states that can be removed to simplify the model (use modred to reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back to its unstable part to form sysb. The entries of g corresponding to unstable modes are set to Inf. You can specify additional options for the stable/unstable decomposition:

```
[sysb,g] = balreal(sys,...
    'AbsTol',ATOL,'RelTol',RTOL,'Offset', ALPHA)
```

See stabsep for more details on these options. The default values are ATOL $=0$, RTOL $=1 \mathrm{e}-8$, and ALPHA $=1 \mathrm{e}-8$.

Use balreal(sys, condmax) to control the condition number of the stable/unstable decomposition. Increasing condmax helps separate close by stable and unstable modes at the expense of accuracy. By default condmax $=1 \mathrm{e}$.
[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the diagonal of the balanced gramian, the state similarity transformation
$x_{\mathrm{L}}=T x$ used to convert sys to sysb, and the inverse transformation
$T \mathrm{i}=T^{-1}$.
If the system is normalized properly, the diagonal g of the joint gramian can be used to reduce the model order. Because g reflects the combined
controllability and observability of individual states of the balanced model, you can delete those states with a small $g(i)$ while retaining the most important input-output characteristics of the original system. Use modred to perform the state elimination.
There are also overloaded methods available. Type

```
help ss/balreal
help lti/balreal
help idmodel/balreal
```

for more information.
Example 1 Consider the zero-pole-gain model

```
sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)
Zero/pole/gain:
    (s+10) (s+20.01)
(s+5) (s+9.9) (s+20.1)
```

A state-space realization with balanced gramians is obtained by

```
[sysb,g] = balreal(sys)
```

The diagonal entries of the joint gramian are

```
g'
ans =
    0.1006 0.0001 0.0000
```

which indicates that the last two states of sysb are weakly coupled to the input and output. You can then delete these states by

```
sysr = modred(sysb,[2 3],'del')
```

to obtain the following first-order approximation of the original system.

```
zpk(sysr)
```

Zero/pole/gain:
1.0001
(s+4.97)

Compare the Bode responses of the original and reduced-order models.

```
bode(sys,'-',sysr,'x')
```

Bode Diagrams

balreal

Example2 Create this unstable system:

```
sys1=tf(1,[1 0 -1])
Transfer function:
        1
    s^2 - 1
```

Apply balreal to create a balanced gramian realization.
[sysb, g]=balreal(sys1)
$\mathrm{a}=$

	x1	x2
x1	1	0
x2	0	-1

b =

	u 1
$\times 1$	0.7071
$\times 2$	0.7071

c =
$\begin{array}{lll}\mathrm{y} 1 & 0.7071 & -0.7071\end{array}$
$d=$
u1
y1 0
Continuous-time model.
$\mathrm{g}=$

> Inf
> 0.2500

The unstable pole shows up as Inf in vector g.

Algorithm

Consider the model

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

with controllability and observability gramians W_{c} and W_{o}. The state coordinate transformation $\bar{x}=T x$ produces the equivalent model

$$
\begin{aligned}
\dot{\bar{x}} & =T A T^{-1} \bar{x}+T B u \\
y & =C T^{-1} \bar{x}+D u
\end{aligned}
$$

and transforms the gramians to

$$
\bar{W}_{c}=T W_{c} T^{T}, \quad \bar{W}_{o}=T^{-T} W_{o} T^{-1}
$$

The function balreal computes a particular similarity transformation T such that

$$
\bar{W}_{c}=\bar{W}_{o}=\operatorname{diag}(g)
$$

See [1], [2] for details on the algorithm.

References

[1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, "Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms," IEEE Trans. Automatic Control, AC-32 (1987), pp. 115-122.
[2] Moore, B., "Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 17-31.

balreal

[3] Laub, A.J., "Computation of Balancing Transformations," Proc. ACC, San Francisco, Vol.1, paper FA8-E, 1980.

See Also gram, modred, ss, ssbal

Purpose Model order reduction

```
Syntax rsys = balred(sys,ORDERS)
rsys = balred(sys,ORDERS,...,'Elimination',METHOD)
rsys = balred(sys,ORDERS,...,'Balancing',BALDATA)
```


Description

rsys = balred(sys,ORDERS) computes a reduced-order approximation rsys of the LTI model sys. The desired order (number of states) for rsys is specified by ORDERS. You can try multiple orders at once by setting ORDERS to a vector of integers, in which case rsys is a vector of reduced-order models. Use hsvd to plot the Hankel singular values and pick an adequate approximation order. States with relatively small Hankel singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable parts using stabsep, and only the stable part is approximated. Use

```
sys = balred(sys,ORDERS,'AbsTol',ATOL,...
    'RelTol',RTOL,'Offset',ALPHA)
```

to specify additional options for the stable/unstable decomposition. See stabsep for details. The default values are ATOL=0, RTOL=1e-8, and ALPHA=1e-8.
rsys = balred(sys,ORDERS,...,'Elimination',METHOD) specifies the state elimination method. Available choices for METHOD include:

- 'MatchDC': Enforce matching DC gains (default)
- 'Truncate ': Simply discard the states associated with small Hankel singular values. The 'Truncate' method tends to produce a better approximation in the frequency domain, but the DC gains are not guaranteed to match.
rsys = balred(sys,ORDERS,...,'Balancing', BALDATA) makes use of the balancing data BALDATA produced by hsvd. Because hsvd does

balred

most of the work needed to compute rsys, this syntax is more efficient when using hsvd and balred jointly.
balred uses implicit balancing techniques to compute the reducedorder approximation rsys.

There is more than one balred method available. Type
help lti/balred
for more information.

Note The order of the approximate model is always at least the number of unstable poles and at most the minimal order of the original model (number NNZ of nonzero Hankel singular values using an eps-level relative threshold)

References

See Also
hsvd, lti/order, minreal, sminreal
Purpose Frequency response bandwidth
Syntax fb = bandwidth(sys)fb = bandwidth(sys,dbdrop)
Description $\mathrm{fb}=$ bandwidth(sys) computes the bandwidth fb of the SISO modelsys, defined as the first frequency where the gain drops below 70.79percent $(-3 \mathrm{~dB})$ of its DC value. The frequency fb is expressed inradians per second.You can create sys using tf, ss, or zpk. See ltimodels for details. ForFRD models, bandwidth uses the first frequency point to approximatethe DC gain.
$\mathrm{fb}=$ bandwidth(sys,dbdrop) further specifies the critical gain drop in dB . The default value is -3 dB , or a 70.79 percent drop.
If sys is an S1-by...-by-Sp array of LTI models, bandwidth returns an array of the same size such that

```
fb(j1,\ldots..,jp) = bandwidth(sys(:,:,j1,\ldots,.,jp))
```

See Also dcgain, issiso, ltimodels

Purpose
 Bode diagram of frequency response

Syntax

```
bode
bode(sys)
bode(sys,w)
bode(sys1,sys2,...,sysN)
bode(sys1,sys2, ...,sysN,w)
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN')
[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)
```


Description

bode computes the magnitude and phase of the frequency response of LTI models. When invoked without left-side arguments, bode produces a Bode plot on the screen. The magnitude is plotted in decibels (dB), and the phase in degrees. The decibel calculation for mag is computed as $20 \log _{10}(|H(j \omega)|$, where $|H(j \omega)|$ is the system's frequency response. Bode plots are used to analyze system properties such as the gain margin, phase margin, DC gain, bandwidth, disturbance rejection, and stability.
bode (sys) plots the Bode response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode produces an array of Bode plots, each plot showing the Bode response of one particular I/O channel. The frequency range is determined automatically based on the system poles and zeros.
bode(sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval [wmin, wmax], set w = \{wmin, wmax\}. To use particular frequency points, set w to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. All frequencies should be specified in rad/s.
bode(sys1, sys2, ...,sysN) or bode(sys1,sys2, ...,sysN,w) plots the Bode responses of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous and discrete systems. This syntax is useful to compare the Bode responses of multiple systems.
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN') specifies which color, linestyle, and/or marker should be used to plot each system. For example,

```
bode(sys1,'r--',sys2,'gx')
```

uses red dashed lines for the first system sys1 and green ' x ' markers for the second system sys2.
When invoked with left-side arguments

```
[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)
```

return the magnitude and phase (in degrees) of the frequency response at the frequencies w (in $\mathrm{rad} / \mathrm{s}$). The outputs mag and phase are 3-D arrays with the frequency as the last dimension (see "Arguments" below for details). You can convert the magnitude to decibels by

```
magdb = 20* log10(mag)
```


Remark

Arguments

If sys is an FRD model, bode(sys,w), w can only include frequencies in sys.frequency.

The output arguments mag and phase are 3-D arrays with dimensions (number of outputs) \times (number of inputs) \times (length of w)

For SISO systems, $\operatorname{mag}(1,1, k)$ and phase $(1,1, k)$ give the magnitude and phase of the response at the frequency $\omega_{k}=w(k)$.

$$
\begin{aligned}
\operatorname{mag}(1,1, \mathrm{k}) & =\left|h\left(j \omega_{k}\right)\right| \\
\text { phase }(1,1, \mathrm{k}) & =\angle h\left(j \omega_{k}\right)
\end{aligned}
$$

MIMO systems are treated as arrays of SISO systems and the magnitudes and phases are computed for each SISO entry h_{ij} independently (h_{ij} is the transfer function from input j to output i). The

bode

values mag ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) and phase ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) then characterize the response of h_{ij} at the frequency $\mathrm{w}(\mathrm{k})$.

$$
\begin{aligned}
\operatorname{mag}(\mathrm{i}, \mathrm{j}, \mathrm{k}) & =\left|h_{i j}\left(j \omega_{k}\right)\right| \\
\text { phase }(\mathrm{i}, \mathrm{j}, \mathrm{k}) & =\angle h_{i j}\left(j \omega_{k}\right)
\end{aligned}
$$

Example
You can plot the Bode response of the continuous SISO system

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

by typing

$$
\begin{aligned}
& g=\operatorname{tf}\left(\left[\begin{array}{lll}
1 & 0.1 & 7.5
\end{array}\right],\left[\begin{array}{llll}
1 & 0.12 & 9 & 0
\end{array}\right]\right) ; \\
& \text { bode(g) }
\end{aligned}
$$

bode

To plot the response on a wider frequency range, for example, from 0.1 to $100 \mathrm{rad} / \mathrm{s}$, type

```
bode(g,{0.1 , 100})
```

You can also discretize this system using zero-order hold and the sample time $T_{s}=0.5$ second, and compare the continuous and discretized responses by typing

```
gd = c2d(g,0.5)
bode(g,'r',gd,'b--')
```


Algorithm

For continuous-time systems, bode computes the frequency response by evaluating the transfer function $H(s)$ on the imaginary axis $s=j \omega$. Only positive frequencies ω are considered. For state-space models, the frequency response is $D+C(j \omega-A)^{-1} B, \quad \omega \geq 0$

When numerically safe, A is diagonalized for maximum speed. Otherwise, A is reduced to upper Hessenberg form and the linear equation $(j \omega-A) X=B$ is solved at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating the transfer function $H(z)$ on the unit circle. To facilitate interpretation, the upper-half of the unit circle is parametrized as

$$
z=e^{j \omega T}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\pi}{T_{s}}
$$

where T_{s} is the sample time. ω_{N} is called the Nyquist frequency. The equivalent "continuous-time frequency" ω is then used as the x-axis variable. Because $H\left(e^{j \omega T_{s}}\right)$
is periodic with period $2 \omega_{N}$, bode plots the response only up to the Nyquist frequency ω_{N}. If the sample time is unspecified, the default value $T_{s}=1$ is assumed.

Diagnostics If the system has a pole on the $j \omega$ axis (or unit circle in the discrete case) and whappens to contain this frequency point, the gain is infinite, $j \omega I-A$ is singular, and bode produces the warning message

Singularity in freq. response due to jw -axis or unit circle pole.

References

See Also
[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

```
evalfr, freqresp, ltiview, nichols, nyquist, sigma
```


Purpose
 Bode magnitude response of LTI models

Syntax
Description

bodemag(sys)
bodemag(sys, \{wmin, wmax\})
bodemag(sys,w)
bodemag(sys1,sys2,...,sysN,w)
bodemag (sys) plots the magnitude of the frequency response of the LTI model SYS (Bode plot without the phase diagram). The frequency range and number of points are chosen automatically.
bodemag (sys, \{wmin, wmax\}) draws the magnitude plot for frequencies between wmin and wmax (in radians/second).
bodemag(sys,w) uses the user-supplied vector W of frequencies, in radians/second, at which the frequency response is to be evaluated.
bodemag(sys1, sys2, ...,sysN,w) shows the frequency response magnitude of several LTI models sys1,sys2, . . , sysN on a single plot. The frequency vector w is optional. You can also specify a color, line style, and marker for each model, as in
bodemag(sys1,'r',sys2,'y--',sys3,'gx').

See Also
bode, ltiview, ltimodels

Purpose
Plot Bode frequency response and return plot handle
Syntax

```
h = bodeplot(sys)
bodeplot(sys)
bodeplot(sys1,sys2,...)
bodeplot(AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)
```


Description

$\mathrm{h}=$ bodeplot(sys) plot the Bode magnitude and phase of an LTI model sys and returns the plot handle h to the plot. You can use this handle to customize the plot with the getoptions and setoptions commands.
bodeplot (sys) draws the Bode plot of the LTI model sys (created with either $\mathrm{tf}, \mathrm{zpk}, \mathrm{ss}$, or frd). The frequency range and number of points are chosen automatically.
bodeplot (sys1, sys2, ...) graphs the Bode response of multiple LTI models sys 1, sys $2, \ldots$ on a single plot. You can specify a color, line style, and marker for each model, as in

```
bodeplot(sys1,'r',sys2,'y--',sys3,'gx')
```

bodeplot (AX, ...) plots into the axes with handle AX.
bodeplot(..., plotoptions) plots the Bode response with the options specified in plotoptions. Type

```
help bodeoptions
```

for a list of available plot options. See "Example 2" on page 2-25 for an example of phase matching using the PhaseMatchingFreq and PhaseMatchingValue options.
bodeplot (sys,w) draws the Bode plot for frequencies specified by w. When $w=\{$ wmin, wmax\}, the Bode plot is drawn for frequencies between wmin and wmax (in rad/s). When w is a user-supplied vector w of frequencies, in $\mathrm{rad} / \mathrm{s}$, the Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Examples Example 1

Use the plot handle to change options in a Bode plot.

```
sys = rss(5);
h = bodeplot(sys);
% Change units to Hz and make phase plot invisible
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');
```


Example 2

The properties PhaseMatchingFreq and PhaseMatchingValue are parameters you can use to specify the phase at a specified frequency. For example, enter the following commands.

```
sys = tf(1,[1 1]);
h = bodeplot(sys) % This displays a Bode plot.
```


bodeplot

Use this code to match a phase of 750 degrees to $1 \mathrm{rad} / \mathrm{s}$.

```
p = getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue = 750; % Set the phase to 750 degrees at 1
    % rad/s.
setoptions(h,p); % Update the Bode plot.
```


The first bode plot has a phase of -45 degrees at a frequency of $1 \mathrm{rad} / \mathrm{s}$. Setting the phase matching options so that at $1 \mathrm{rad} / \mathrm{s}$ the phase is near 750 degrees yields the second Bode plot. Note that, however, the phase can only be $-45+\mathrm{N}^{*} 360$, where N is an integer, and so the plot is set to the nearest allowable phase, namely 675 degrees (or $2 * 360-45=675$).

See Also

bode, getoptions, setoptions

Purpose Convert from continuous- to discrete-time models

```
Syntax sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,
[sysd,G] = c2d(sys,Ts,method)
```


Description

sysd $=$ c2d(sys,Ts) discretizes the continuous-time LTI model sys using zero-order hold on the inputs and a sample time of Ts seconds.
sysd $=$ c2d(sys,Ts,method) gives access to alternative discretization schemes. The string method selects the discretization method among the following:

'zoh '	Zero-order hold. The control inputs are assumed piecewise constant over the sampling period Ts.
'foh '	Triangle approximation (modified first-order hold, see [1], p. 151). The control inputs are assumed piecewise linear over the sampling period Ts.
'imp'	Impulse-invariant discretization
'tustin'	Bilinear (Tustin) approximation
'prewarp'	Tustin approximation with frequency prewarping. You must specify the critical frequency Wc (in rad/s) as a fourth input as in

```
sysd = c2d(sysc,ts,'prewarp',Wc)
```

'matched' Matched pole-zero method. See [1], p. 147.

Refer to Continuous/Discrete Conversions of LTI Models for more detail on these discretization methods.
c2d supports MIMO systems (except for the 'matched ' method) as well as LTI models with delays with some restrictions for 'matched ' and 'tustin' methods.

For state-space systems,

```
[sysd,G] = c2d(sys,Ts,method)
```

returns a matrix G that maps the continuous initial conditions x_{0} and u_{0} to their discrete counterparts $x[0]$ and $u[0]$ according to

$$
\begin{aligned}
& x[0]=G \cdot\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right] \\
& u[0]=u_{0}
\end{aligned}
$$

Example

Consider the system

$$
H(s)=\frac{s-1}{s^{2}+4 s+5}
$$

with input delay $T_{d}=0.35$ second. To discretize this system using the triangle approximation with sample time $T_{s}=0.1$ second, type

```
H = tf([1 -1],[1 4 5],'inputdelay',0.35)
Transfer function:
                                    s - 1
exp(-0.35*s) * ------------
                                    s^2 + 4 s + 5
Hd = c2d(H,0.1,'foh')
Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104
    z^6 - 1.629 z^5 + 0.6703 z^4
Sampling time: 0.1
```

The next command compares the continuous and discretized step responses.

step(H,'-',Hd,'--')

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990.

See Also
 d2c, d2d

Purpose State-space canonical realization

Syntax

```
csys = canon(sys,'modal')
csys = canon(sys,'modal',CONDT)
csys = canon(sys,'companion')
[csys,T] = canon(sys,'type')
```


Description

canon computes a canonical state-space model for the continuous or discrete LTI system sys. Two types of canonical forms are supported.

Modal Form

csys = canon(sys,'modal') returns a realization csys in modal form. If A has no repeated eigenvalues, the real eigenvalues appear on the diagonal of the A matrix and the complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of A. For a system with eigenvalues ($\lambda_{1}, \sigma \pm j \omega, \lambda_{2}$), the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

csys = canon(sys,'modal',CONDT) specifies an upper bound CONDT on the condition number of the block-diagonalizing transformation T. The default value is CONDT=1e8. Increase CONDT to reduce the size of the eigenvalue clusters (setting CONDT=Inf amounts to diagonalizing A).

Companion Form

csys = canon(sys,'companion') produces a companion realization of sys where the characteristic polynomial of the system appears explicitly in the rightmost column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -a_{n} \\
1 & 0 & 0 & . . & 0 & -a_{n-1} \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -a_{2} \\
0 & . . & . . & 0 & 1 & -a_{1}
\end{array}\right]
$$

For state-space models sys,

```
[csys,T] = canon(sys,'type')
```

also returns the state coordinate transformation T relating the original state vector x and the canonical state vector x_{c}, where

$$
x_{c}=T x
$$

This syntax is meaningful only when sys is a state-space model.

Algorithm

Transfer functions or zero-pole-gain models are first converted to state space using ss.

The transformation to modal form uses the matrix P of eigenvectors of the A matrix. The modal form is then obtained as

$$
\begin{aligned}
\dot{x}_{c} & =P^{-1} A P x_{c}+P^{-1} B u \\
y & =C P x_{c}+D u
\end{aligned}
$$

The state transformation T returned is the inverse of P.
The reduction to companion form uses a state similarity transformation based on the controllability matrix [1].
Limitations The companion transformation requires that the system be controllablefrom the first input. The companion form is often poorly conditioned formost state-space computations; avoid using it when possible.
References [1] Kailath, T. Linear Systems, Prentice-Hall, 1980.
See Also ctrb, ctrbf, ss2ss

Purpose
Solve continuous-time algebraic Riccati equation
Syntax

```
[X,L,G] = care(A,B,Q)
[X,L,G] = care(A,B,Q,R,S,E)
[X,L,G,report] = care(A,B,Q,...)
[X1,X2,D,L] = care(A,B,Q,...,'factor')
```


Description

$[X, L, G]=\operatorname{care}(A, B, Q)$ computes the unique solution X of the continuous-time algebraic Riccati equation

$$
A^{T} X+X A-X B B^{T} X+Q=0
$$

The care function also returns the gain matrix, $G=R^{-1} B^{T} X E$. $[X, L, G]=\operatorname{care}(A, B, Q, R, S, E)$ solves the more general Riccati equation

$$
A^{T} X E+E^{T} X A-\left(E^{T} X B+S\right) R^{-1}\left(B^{T} X E+S^{T}\right)+Q=0
$$

When omitted, R, S, and E are set to the default values $R=I, S=0$, and $\mathrm{E}=\mathrm{I}$. Along with the solution X , care returns the gain matrix $G=R^{-1}\left(B^{T} X E+S^{T}\right)$ and a vector L of closed-loop eigenvalues, where

$$
L=e i g(A-B * G, E)
$$

$[X, L, G, r e p o r t]=\operatorname{care}(A, B, Q, \ldots)$ returns a diagnosis report with:

- -1 when the associated Hamiltonian pencil has eigenvalues on or very near the imaginary axis (failure)
- -2 when there is no finite stabilizing solution X
- The Frobenius norm of the relative residual if X exists and is finite.

This syntax does not issue any error message when X fails to exist.
[X1,X2,D,L] = care(A,B,Q,...,'factor') returns two matrices X1, $X 2$ and a diagonal scaling matrix D such that $X=D *(X 2 / X 1) * D$.

The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

Examples Example 1

Given

$$
A=\left[\begin{array}{cc}
-3 & 2 \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & -1
\end{array}\right] \quad R=3
$$

you can solve the Riccati equation

$$
A^{T} X+X A-X B R^{-1} B^{T} X+C^{T} C=0
$$

by

```
\(a=[-32 ; 11]\)
b \(=[0 ; 1]\)
c \(=\left[\begin{array}{ll}1 & -1\end{array}\right]\)
\(r=3\)
\([x, l, g]=\operatorname{care}\left(a, b, c^{\prime *} c, r\right)\)
```

This yields the solution

```
x
x =
    0.5895 1.8216
    1.8216 8.8188
```

You can verify that this solution is indeed stabilizing by comparing the eigenvalues of a and $a-b * g$.

```
[eig(a) eig(a-b*g)]
```

```
ans =
    -3.4495 -3.5026
    1.4495 -1.4370
```

Finally, note that the variable 1 contains the closed-loop eigenvalues eig(a-b*g).

```
l
l =
    -3.5026
    -1.4370
```


Example 2

To solve the H_{∞}-like Riccati equation

$$
4^{T} X+X A+X\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X+C^{T} C=(
$$

rewrite it in the care format as

$$
4^{T} X+X A-X \underbrace{\left[B_{1}, B_{2}\right]}_{B} \underbrace{\left[\begin{array}{cc}
-\gamma^{-2} I & 0 \\
0 & I
\end{array}\right]}_{R}]^{-1}\left[\begin{array}{c}
B_{1}^{T} \\
B_{2}^{T}
\end{array}\right] X+C^{T} C=\mathrm{C}
$$

You can now compute the stabilizing solution X by

```
B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]
X = care(A,B,C'*C,R)
```


Algorithm

See Also

Limitations The (A, B) pair must be stabilizable (that is, all unstable modes are controllable). In addition, the associated Hamiltonian matrix or pencil controllable). In addition, the associated Hamiltonian matrix or penci
must have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold are (Q, A) detectable when $S=0$ and $R>0$, or

$$
\left[\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right]>0
$$

References [1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754

care implements the algorithms described in [1]. It works with the Hamiltonian matrix when R is well-conditioned and $E=I$; otherwise it uses the extended Hamiltonian pencil and QZ algorithm.
dare, lyap

Purpose Change frequency units of FRD model
Syntax sys = chgunits(sys,units)
Description sys = chgunits(sys, units) converts the units of the frequency points stored in an FRD model, sys to units, where units is either of the strings ' Hz ' or 'rad/s'. This operation changes the assigned frequencies by applying the appropriate ($2 * \mathrm{pi}$) scaling factor, and the 'Units ' property is updated.

If the 'Units ' field already matches units, no conversion is made.

Example

```
w = logspace(1,2,2);
sys = rss(3,1,1);
sys = frd(sys,w)
From input 'input 1' to:
        Frequency(rad/s) output 1
        10 0.293773+0.001033i
        100 0.294404+0.000109i
Continuous-time frequency response data.
sys = chgunits(sys,'Hz')
sys.freq
ans =
            1.5915
            15.9155
```

See Also frd, get, set

Purpose Form model with complex conjugate coefficients

Syntax sysc = conj(sys)

Description sysc $=\operatorname{conj}($ sys $)$ is an constructs a complex conjugate model sysc by applying complex conjugation to all coefficients of the LTI model sys. This function accepts LTI models in transfer function (TF), zero/pole/gain (ZPK), and state space (SS) formats.

Example If sys is the transfer function
(2+i)/(s+i)
then conj(sys) produces the transfer function (2-i)/(s-i)

This operation is useful for manipulating partial fraction expansions.

See Also
 append, ss, tf, zpk

Purpose Arbitrary interconnection of LTI models

```
Syntax
sysc = connect(sysa, sysb, ..., inputs,
    outputs) sysc = connect(sys,Q,inputs,outputs)
```


Description

sysc $=$ connect(sysa, sysb, ..., inputs, outputs) sysc = connect(sys,Q,inputs,outputs)
connect constructs the aggregate model for a given block diagram interconnection of LTI models. You can specify the block diagram connectivity in two ways, name-based and index-based.

Name-Based Interconnection

In this approach, you name the input and output signals of all LTI blocks sys1, sys2,... in the block diagram, including the summation blocks. The aggregate model sys is then built by

```
sys = connect
(sys1,sys2,...,inputs,outputs)
```

where inputs and outputs are the names of the block diagram external I/Os, specified as strings or cell arrays of strings.

Example

Given LTI models C and G, and referring to this block diagram,

you can construct the closed-loop transfer T from r to y as follows

```
C.InputName = e; C.OutputName = u;
G.InputName = u; G.OutputName = y;
Sum = ss([1,-1],'InputName',{'r','y'},'OutputName','e');
T = connect(G,G,Sum,'r','y')
```


Index-Based Interconnection

In this approach, first combine all LTI blocks into an aggregate, unconnected model blksys using append. Then construct a matrix Q where each row specifies one of the connections or summing junctions in terms of the input vector u and output vector y of blksys. For example, the row

$$
\left[\begin{array}{llll}
3 & 2 & 0 & 0
\end{array}\right]
$$

indicates that $y(2)$ feeds into $u(3)$, while the row

```
[7 2 -15 6]
```

indicates that $y(2)-y(15)+y(6)$ feeds into $u(7)$. The aggregate model sys is then obtained by

```
sys = connect(blksys,Q,inputs,outputs)
```

where inputs and outputs are index vectors into u and y selecting the block diagram external I/Os.

Example

You can construct the closed-loop model T for the block diagram above as follows:

```
blksys = append(C,G);
% u = inputs to C,G. y = outputs of C,G.
% Here y(1) feeds into u(2) and -y(2) feeds into u(1)
Q = [2 1; 1 -2];
% External I/Os: r drives u(1) and y is y(2)
T = connect(blksys,Q,1,2)
```

Since it is easy to make a mistake entering all the data required for a large model, be sure to verify your model in as many ways as you can. Here are some suggestions:

- Make sure the poles of the unconnected model sys match the poles of the various blocks in the diagram.
- Check that the final poles and DC gains are reasonable.
- Plot the step and bode responses of sysc and compare them with your expectations.

Delays

The connect function supports I/O and internal delays. See Time Delays for more information and examples.

Example Consider the following block diagram

Given the matrices of the state-space model sys2

```
A = [ -9.0201 17.7791
    -1.6943 3.2138 ];
B = [ -.5112 . . 5362
    -.002 -1.8470];
C = [ -3.2897 2.4544
    -13.5009 18.0745];
D = [-.5476 -. 1410
    -.6459 . 2958 ];
```

Define the three blocks as individual LTI models.

```
sys1 = tf(10,[1 5],'inputname','uc')
sys2 = ss(A,B,C,D,'inputname',{'u1' 'u2'},\ldots.
    'outputname',{'y1' 'y2'})
sys3 = zpk(-1,-2,2)
```

Next append these blocks to form the unconnected model sys.

```
sys = append(sys1,sys2,sys3)
```

This produces the block-diagonal model

sys				
$\mathrm{a}=$				
	x 1	x2	x3	x4
x1	-5	0	0	0
x2	0	-9.0201	17.779	0
x3	0	-1.6943	3.2138	0
x4	0	0	0	-2

$\mathrm{b}=$

	uc	u1	u2	$?$
x1	4	0	0	0
x2	0	-0.5112	0.5362	0
x3	0	-0.002	-1.847	0
x4	0	0	0	1.4142

$c=$				
x1	x2	x3	x4	
$?$	2.5	0	0	0
$y 1$	0	-3.2897	2.4544	0
$y 2$	0	-13.501	18.075	0

$?$	0	0	0	-1.4142
$d=$				
	uc	u1	u2	?
$?$	0	0	0	0
y1	0	-0.5476	-0.141	0
y2	0	-0.6459	0.2958	0
?	0	0	0	2

Continuous-time system.
Note that the ordering of the inputs and outputs is the same as the block ordering you chose. Unnamed inputs or outputs are denoted b.
To derive the overall block diagram model from sys, specify the interconnections and the external inputs and outputs. You need to connect outputs 1 and 4 into input 3 (u2), and output 3 (y2) into input 4. The interconnection matrix Q is therefore

$$
\left.Q=\begin{array}{ccc}
{[3} & 1 & -4 \\
4 & 3 & 0
\end{array}\right] ;
$$

Note that the second row of Q has been padded with a trailing zero. The block diagram has two external inputs uc and u1 (inputs 1 and 2 of sys), and two external outputs y1 and y2 (outputs 2 and 3 of sys). Accordingly, set inputs and outputs as follows.

```
inputs = [1 2];
outputs = [2 3];
```

You can obtain a state-space model for the overall interconnection by typing

```
sysc = connect(sys,Q,inputs,outputs)
```

$\mathrm{a}=$
x 1 - X2 x3 x4

	x 1	-5	0	0	0
	x2	0.84223	0.076636	5.6007	0.47644
	x3	-2.9012	-33.029	45.164	-1.6411
	$\times 4$	0.65708	-11.996	16.06	-1.6283
$\mathrm{b}=$					
		uc	u1		
	x 1	4	0		
	x2	0	-0.076001		
	x3	0	-1.5011		
x	$\times 4$	0	-0.57391		
$\mathrm{c}=$					
		x1	x2	x3	$\times 4$
	y1	-0.22148	-5.6818	5.6568	-0.12529
	y2	0.46463	-8.4826	11.356	0.26283
$d=$					
		uc	u1		
	y1	0	-0.66204		
	y2	0	-0.40582		

Note that the inputs and outputs are as desired.

References [1] Edwards, J.W., "A Fortran Program for the Analysis of Linear Continuous and Sampled-Data Systems," NASA Report TM X56038, Dryden Research Center, 1976.

See Also

append, feedback, minreal, parallel, series, lft

Purpose
 Output and state covariance of system driven by white noise

Syntax

P = covar(sys,W)
P(:,:,i1,...iN)
Q(:,:,i1,...iN)
sys(:,:,i1,...iN)

Description

covar calculates the stationary covariance of the output y of an LTI model sys driven by Gaussian white noise inputs w. This function handles both continuous- and discrete-time cases.
$P=$ covar(sys,W) returns the steady-state output response covariance

$$
P=E\left(y y^{T}\right)
$$

given the noise intensity

$$
\begin{array}{cl}
E\left(w(t) w(\tau)^{T}\right)=W \delta(t-\tau) & \text { (continuous time) } \\
E\left(w[k] w[l]^{T}\right)=W \delta_{k l} & \text { (discrete time) }
\end{array}
$$

$[P, Q]=\operatorname{covar}(s y s, W)$ also returns the steady-state state covariance

$$
Q=E\left(x x^{T}\right)
$$

when sys is a state-space model (otherwise Q is set to []).
When applied to an N -dimensional LTI array sys, covar returns multidimensional arrays P, Q such that
$P(:,:, i 1, \ldots i N)$ and $Q(:,:, i 1, \ldots i N)$ are the covariance matrices for the model sys(:,:,i1,...iN).

Example Compute the output response covariance of the discrete SISO system

$$
H(z)=\frac{2 z+1}{z^{2}+0.2 z+0.5}, \quad T_{s}=0.1
$$

```
due to Gaussian white noise of intensity \(W=5\). Type
    sys = tf([2 1],[1 0.2 0.5],0.1);
    p = covar(sys,5)
and MATLAB returns
\(p=\)
    30.3167
```

You can compare this output of covar to simulation results.

```
randn('seed',0)
w = sqrt(5)*randn(1,1000); % 1000 samples
% Simulate response to w with LSIM:
y = lsim(sys,w);
% Compute covariance of y values
psim = sum(y .* y)/length(w);
```

This yields

psim =

32.6269

The two covariance values p and p sim do not agree perfectly due to the finite simulation horizon.

Algorithm

Transfer functions and zero-pole-gain models are first converted to state space with ss.

For continuous-time state-space models

$$
\begin{aligned}
& \dot{x}=A x+B w \\
& y=C x+D w
\end{aligned}
$$

Q is obtained by solving the Lyapunov equation

$$
A Q+Q A^{T}+B W B^{T}=0
$$

The output response covariance P is finite only when $D=0$ and then $P=C Q C^{T}$.
In discrete time, the state covariance solves the discrete Lyapunov equation

$$
A Q A^{T}-Q+B W B^{T}=0
$$

and P is given by $P=C Q C^{T}+D W D^{T}$
Note that P is well defined for nonzero D in the discrete case.

Limitations

References

See Also

The state and output covariances are defined for stable systems only. For continuous systems, the output response covariance P is finite only when the D matrix is zero (strictly proper system).
[1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975, pp. 458-459.
dlyap, lyap

Purpose

Controllability matrix

Syntax

Co = ctrb(sys)
ctrb computes the controllability matrix for state-space systems. For an n-by- n matrix A and an n-by- m matrix $\mathrm{B}, \operatorname{ctrb}(\mathrm{A}, \mathrm{B})$ returns the controllability matrix

$$
C o=\left[\begin{array}{llll}
B A B & A^{2} B & \ldots & A^{n-1} B \tag{2-1}
\end{array}\right]
$$

where $C o$ has n rows and $n m$ columns.
Co $=\operatorname{ctrb}($ sys) calculates the controllability matrix of the state-space LTI object sys. This syntax is equivalent to executing
Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Example

Check if the system with the following data

```
A =
        1
        4 -2
B =
    1 -1
        1 -1
```

is controllable. Type

```
Co=ctrb(A,B);
```

\% Number of uncontrollable states
unco=length (A) $-\mathrm{rank}(\mathrm{Co})$
and MATLAB returns

```
unco =
1
```

Limitations Estimating the rank of the controllability matrix is ill-conditioned; that is, it is very sensitive to roundoff errors and errors in the data. An indication of this can be seen from this simple example.

$$
A=\left[\begin{array}{ll}
1 & \delta \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
\delta
\end{array}\right]
$$

This pair is controllable if $\delta \neq 0$ but if $\delta<\sqrt{e p s}$, where eps is the relative machine precision. ctrb (A, B) returns

$$
\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
\delta & \delta
\end{array}\right]
$$

which is not full rank. For cases like these, it is better to determine the controllability of a system using ctrbf.

See Also ctrbf, obsv

Purpose

Compute controllability staircase form

Syntax

Description

```
[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
ctrbf(A,B,C,tol)
```

If the controllability matrix of (A, B) has rank $r \leq n$, where n is the size of A, then there exists a similarity transformation such that

$$
\bar{A}=T A T^{T}, \quad \bar{B}=T B, \quad \bar{C}=C T^{T}
$$

where T is unitary, and the transformed system has a staircase form, in which the uncontrollable modes, if there are any, are in the upper left corner.

$$
\bar{A}=\left[\begin{array}{cc}
A_{u c} & 0 \\
A_{21} & A_{c}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{c}
0 \\
B_{c}
\end{array}\right], \quad \bar{C}=\left[\begin{array}{ll}
C_{n c} & C_{c}
\end{array}\right]
$$

where $\left(A_{c}, B_{c}\right)$ is controllable, all eigenvalues of $A_{u c}$ are uncontrollable, and

$$
C_{c}\left(s I-A_{c}\right)^{-1} B_{c}=C(s I-A)^{-1} B .
$$

[Abar, Bbar, Cbar, $\mathrm{T}, \mathrm{k}]=\operatorname{ctrbf}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ decomposes the state-space system represented by A, B, and C into the controllability staircase form, Abar, Bbar, and Cbar, described above. T is the similarity transformation matrix and k is a vector of length n, where n is the order of the system represented by A. Each entry of k represents the number of controllable states factored out during each step of the transformation matrix calculation. The number of nonzero elements in k indicates how many iterations were necessary to calculate T, and sum (k) is the number of states in A_{c} the controllable portion of Abar.
ctrbf (A, B, C, tol) uses the tolerance tol when calculating the controllable/uncontrollable subspaces. When the tolerance is not specified, it defaults to $10 * n * \operatorname{norm}(A, 1) * e p s$.

Example
Compute the controllability staircase form for
A =

1	1
4	-2

$B=$

1	-1
1	1

C =
10
$0 \quad 1$
and locate the uncontrollable mode.

```
[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)
Abar =
    -3.0000 0
    -3.0000 2.0000
Bbar =
    0.0000 0.0000
    1.4142 -1.4142
Cbar =
    -0.7071 0.7071
        0.7071 0.7071
T =
        -0.7071 0.7071
        0.7071 0.7071
k =
        1 0
```

The decomposed system Abar shows an uncontrollable mode located at -3 and a controllable mode located at 2 .

Algorithm

References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.
See Also ctrb, minreal
Purpose Set Control System Toolbox preferences

Syntax ctrlpref

Description ctrlpref opens a Graphical User Interface (GUI) which allows you to change preferences for the Control System Toolbox. Preferences set in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be automatically reloaded in future MATLAB sessions using the Control System Toolbox.

See Also
sisotool, ltiview

Purpose Convert from discrete- to continuous-time models

Syntax

Description
d2c converts LTI models from discrete to continuous time using one of the following conversion methods:
'zoh' Zero-order hold on the inputs. The control inputs are assumed piecewise constant over the sampling period.
'tustin' Bilinear (Tustin) approximation to the derivative.
'prewarp' Tustin approximation with frequency prewarping.
'matched ' Matched pole-zero method of [1] (for SISO systems only).

The string method specifies the conversion method. If method is omitted, zero-order hold ('zoh') is assumed. See Continuous/Discrete Conversions of LTI Models for more details on the conversion methods.

Example Consider the discrete-time model with transfer function

$$
H(z)=\frac{z-1}{z^{2}+z+0.3}
$$

and sample time $T_{s}=0.1$ second. You can derive a continuous-time zero-order-hold equivalent model by typing

$$
\mathrm{Hc}=\mathrm{d} 2 \mathrm{c}(\mathrm{H})
$$

Discretizing the resulting model Hc with the zero-order hold method (this is the default method) and sampling period $T_{s}=0.1$ gives back the original discrete model $H(z)$. To see this, type

$$
\mathrm{c} 2 \mathrm{~d}(\mathrm{Hc}, 0.1)
$$

To use the Tustin approximation instead of zero-order hold, type

```
Hc = d2c(H,'tustin')
```

As with zero-order hold, the inverse discretization operation

```
c2d(Hc,0.1,'tustin')
```

gives back the original $H(z)$.

Algorithm

Limitations

The 'zoh' conversion is performed in state space and relies on the matrix logarithm (see logm in the MATLAB documentation).

The Tustin approximation is not defined for systems with poles at $z=-1$ and is ill-conditioned for systems with poles near $z=-1$.

The zero-order hold method cannot handle systems with poles at $z=0$. In addition, the 'zoh' conversion increases the model order for systems with negative real poles, [2]. This is necessary because the matrix logarithm maps real negative poles to complex poles. As a result, a discrete model with a single pole at $z=-0.5$ would be transformed to a continuous model with a single complex pole at $\log (-0.5) \approx-0.6931+j \pi$. Such a model is not meaningful because of its complex time response.

To ensure that all complex poles of the continuous model come in conjugate pairs, d2c replaces negative real poles $z=-\alpha$ with a pair of complex conjugate poles near $-\alpha$. The conversion then yields a continuous model with higher order. For example, the discrete model with transfer function

$$
H(z)=\frac{z+0.2}{(z+0.5)\left(z^{2}+z+0.4\right)}
$$

and sample time 0.1 second is converted by typing

```
Ts = 0.1
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
```

```
Hc=d2c(H)
```

MATLAB responds with

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:
$-33.6556(s-6.273)\left(s^{\wedge} 2+28.29 s+1041\right)$
$\left(s^{\wedge} 2+9.163 s+637.3\right)\left(s^{\wedge} 2+13.86 s+1035\right)$
Convert Hc back to discrete time by typing

```
c2d(Hc,Ts)
```

yielding
Zero/pole/gain:
(z+0.5) (z+0.2)
$(z+0.5)^{\wedge} 2\left(z^{\wedge} 2+z+0.4\right)$
Sampling time: 0.1
This discrete model coincides with $H(z)$ after canceling the pole/zero pair at $z=-0.5$.

References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990.
[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain and s-domain Models in System Identification," Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.
c2d, d2d, logm

Purpose Resample discrete-time LTI model or add input delay

Syntax sys1 = d2d (sys,Ts,method)

Description sys1 = d2d(sys,Ts,method) resamples the discrete-time LTI model sys to produce an equivalent discrete-time model sys 1 with the new sample time Ts (in seconds). The string method specifies the resampling method among the following:

- 'zoh' - Zero-order hold on the inputs
- 'tustin' - Bilinear (Tustin) approximation
- 'prewarp' - Tustin approximation with frequency warping. Specify the critical frequency Wc (in rad/s) as a fourth input by

```
sys = d2d(sys,Ts,'prewarp',Wc)
```

The default is 'zoh' when method is omitted.

Example

Consider the zero-pole-gain model

$$
H(z)=\frac{z-0.7}{z-0.5}
$$

with sample time 0.1 second. You can resample this model at 0.05 second by typing

```
H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)
---------
(z-0.7071)
```

Sampling time: 0.05

Note that the inverse resampling operation, performed by typing d2d (H2,0.1), yields back the initial model $H(z)$.

Zero/pole/gain:
(z-0.7)
(z-0.5)
Sampling time: 0.1
See Also
c2d, d2c, ltiexamples

Purpose Natural frequency and damping of system poles

Syntax $\quad[W n, Z]=\operatorname{damp}(s y s)$
 [Wn,Z,P] = damp(sys)

Description

damp calculates the damping factor and natural frequencies of the poles of an LTI model sys. When invoked without lefthand arguments, a table of the eigenvalues in increasing frequency, along with their damping factors and natural frequencies, is displayed on the screen.
[Wn, Z] = damp(sys) returns column vectors $W n$ and Z containing the natural frequencies ω_{n} and damping factors ζ of the poles of sys. For discrete-time systems with poles z and sample time T_{s}, damp computes "equivalent" continuous-time poles \boldsymbol{s} by solving

$$
z=e^{s T_{n}}
$$

The values $W n$ and Z are then relative to the continuous-time poles s. Both $W n$ and Z are empty if the sample time is unspecified.
[Wn, Z, P] = damp(sys) returns an additional vector P containing the (true) poles of sys. Note that P returns the same values as pole(sys) (up to reordering).

Example Compute and display the eigenvalues, natural frequencies, and damping factors of the continuous transfer function

$$
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

Type

```
H = tf([2 5 1],[\begin{array}{lll}{2 3])}\end{array})
Transfer function:
2 s^2 + 5 s + 1
    s^2 + 2 s + 3
```

Type
damp (H)
and MATLAB returns

| Eigenvalue | Damping | Freq. (rad/s) |
| :--- | :--- | :--- | :--- |
| | | |
| $-1.00 \mathrm{e}+000+1.41 \mathrm{e}+000 \mathrm{i}$ | $5.77 \mathrm{e}-001$ | $1.73 \mathrm{e}+000$ |
| $-1.00 \mathrm{e}+000-1.41 \mathrm{e}+000 \mathrm{i}$ | $5.77 \mathrm{e}-001$ | $1.73 \mathrm{e}+000$ |

See Also
eig, esort, dsort, pole, pzmap, zero

Purpose
Solve discrete-time algebraic Riccati equations (DAREs)

Syntax

```
[X,L,G] = dare(A,B,Q,R)
[X,L,G] = dare(A,B,Q,R,S,E)
[X,L,G,report] = dare(A,B,Q,...)
[X1,X2,L,report] = dare(A,B,Q,...,'factor')
```


Description

$[\mathrm{X}, \mathrm{L}, \mathrm{G}]=\operatorname{dare}(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \mathrm{R})$ computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation

$$
A^{T} X A-X-A^{T} X B\left(B^{T} X B+R\right)^{-1} B^{T} X A+Q=0
$$

The dare function also returns the gain matrix, $G=\left(B^{T} X B+R\right)^{-1} B^{T} X A$, and the vector L of closed loop eigenvalues, where

$$
L=e i g(A-B * G, E)
$$

$[X, L, G]=\operatorname{dare}(A, B, Q, R, S, E)$ solves the more general discrete-time algebraic Riccati equation,

$$
A^{T} X A-E^{T} X E-\left(A^{T} X B+S\right)\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)+Q=(
$$ or, equivalently, if R is nonsingular,

$$
E^{T} X E=F^{T} X F+-F^{T} X B\left(B^{T} X B+R\right)^{-1} B^{T} X F+Q-S R^{-1} S^{T}
$$

where $F=A-B R^{-1} S$. When omitted, R, S, and E are set to the default values $\mathrm{R}=\mathrm{I}, \mathrm{S}=0$, and $\mathrm{E}=\mathrm{I}$.

The dare function returns the corresponding gain
$\operatorname{matrix} G=\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)$
and a vector L of closed-loop eigenvalues, where

$$
L=\operatorname{eig}(A-B * G, E)
$$

$[X, L, G, r e p o r t]=\operatorname{dare}(A, B, Q, \ldots)$ returns a diagnosis report with value:

- -1 when the associated symplectic pencil has eigenvalues on or very near the unit circle
- -2 when there is no finite stabilizing solution X
- The Frobenius norm if X exists and is finite
$[\mathrm{X} 1, \mathrm{X} 2, \mathrm{~L}$, report] $=\operatorname{dare}(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \ldots$, 'factor') returns two matrices, $X 1$ and $X 2$, and a diagonal scaling matrix D such that X $=D *(X 2 / X 1) * D$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Symplectic matrix has eigenvalues on the unit circle.

Algorithm

Limitations

References

See Also
dare implements the algorithms described in [1]. It uses the QZ algorithm to deflate the extended symplectic pencil and compute its stable invariant subspace.

The (A, B) pair must be stabilizable (that is, all eigenvalues of A outside the unit disk must be controllable). In addition, the associated symplectic pencil must have no eigenvalue on the unit circle. Sufficient conditions for this to hold $\operatorname{are}(Q, A)$ detectable when $S=0$ and $R>0$, or

$$
\left[\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right]>0
$$

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754.
care, dlyap, gdare

dcgain

Purpose Low-frequency (DC) gain of LTI system

Syntax $\quad k=$ dcgain(sys)

Description $k=$ dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency $s=0$. For state-space models with matrices (A, B, C, D), this value is

$$
K=D-C A^{-1} B
$$

Discrete Time

The discrete-time DC gain is the transfer function value at $z=1$. For state-space models with matrices (A, B, C, D), this value is

$$
K=D+C(I-A)^{-1} B
$$

Remark

The DC gain is infinite for systems with integrators.
Example
To compute the DC gain of the MIMO transfer function

$$
H(s)=\left[\begin{array}{cc}
1 & \frac{s-1}{s^{2}+s+3} \\
\frac{1}{s+1} & \frac{s+2}{s-3}
\end{array}\right]
$$

type

```
H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])]
dcgain(H)
ans =
    1.0000 -0.3333
    1.0000 -0.6667
```


See Also

evalfr, norm

Purpose Replace delays of discrete-time TF, SS, or ZPK models by poles at $z=0$, or replace delays of FRD models by phase shift

Syntax
 sys = delay2z(sys)

Description
sys $=$ delay $2 z$ (sys) maps all time delays to poles at $z=0$ for discrete-time TF, ZPK, or SS models sys. Specifically, a delay of k sampling periods is replaced by $(1 / z)^{\wedge} k$ in the transfer function corresponding to the model.

For FRD models, delay2z absorbs all time delays into the frequency response data, and is applicable to both continuous- and discrete-time FRDs.

Example

See Also hasdelay, pade, totaldelay

Purpose

Create state-space models with delayed terms

Syntax

Description
sys=delayss (A, B, C, D, delayterms)
sys=delayss(A,B,C,D,ts,delayterms)
sys=delayss(A, B, C, D, delayterms) constructs a continuous-time state-space model of the form:

$$
\begin{aligned}
& \frac{d x}{d t}=A x(t)+B u(t)+\sum_{j=1}^{N}\left(A_{j} x\left(t-t_{j}\right)+B j u\left(t-t_{j}\right)\right) \\
& y(t)=C x(t)+D u(t)+\sum_{j=1}^{N}\left(C_{j} x\left(t-t_{j}\right)+D_{j} u\left(t-t_{j}\right)\right)
\end{aligned}
$$

where $t_{j}, j=1, . ., N$ are time delays expressed in seconds. delayterms is a struct array with fields delay, a, b, c, d where the fields of delayterms(j) contain the values of $\mathrm{tj}, \mathrm{Aj}, \mathrm{Bj}, \mathrm{Cj}$, and Dj , respectively. The resulting model sys is a state-space (SS) model with internal delays. sys=delayss(A, B, C, D, ts, delayterms) constructs the discrete-time counterpart:

$$
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+\sum_{j=1}^{N}\left\{A_{j} x\left[k-n_{j}\right]+B_{j} u\left[k-n_{j}\right]\right\} \\
& y[k]=C x[k]+D u[k]+\sum_{j=1}^{N}\left\{C_{j x} x\left[k-n_{j}\right]+D_{j} u\left[k-n_{j}\right]\right\}
\end{aligned}
$$

where $\mathrm{Nj}, \mathrm{j}=1, . ., \mathrm{N}$ are time delays expressed as integer multiples of the sampling period ts.

Example

To create the model:

$$
\begin{aligned}
& \frac{d x}{d t}=x(t)-x(t-1.2)+2 u(t-0.5) \\
& y(t)=x(t-0.5)+u(t) \\
& \text { type }
\end{aligned}
$$

```
DelayT(1) = struct('delay',0.5,'a',0,'b',2,'c',1,'d',0);
DelayT(2) = struct('delay',1.2,'a',-1,'b',0,'c',0,'d',0);
sys = delayss(1,0,0,1,DelayT)
a =
            x1
            x1 0
b =
            u1
        x1 2
c =
            x1
        y1 1
d =
            u1
        y1 1
(a,b,c,d values when setting all internal delays to zero)
Internal delays: 0.5 0.5 1.2
Continuous-time model.
```

getdelaymodel, ltiprops, ss.

dlqr

Purpose

Syntax

Description

Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system

$$
[K, S, e]=\operatorname{dlqr}(a, b, Q, R, N)
$$

$[K, S, e]=\operatorname{dlqr}(a, b, Q, R, N)$ calculates the optimal gain matrix K such that the state-feedback law

$$
u[n]=-K x[n]
$$

minimizes the quadratic cost function

$$
J(u)=\sum_{n=1}^{\infty}\left(x[n]^{T} Q x[n]+u[n]^{T} R u[n]+2 x[n]^{T} N u[n]\right)
$$

for the discrete-time state-space mode

$$
x[n+1]=A x[n]+B u[n]
$$

The default value $\mathrm{N}=0$ is assumed when N is omitted.
In addition to the state-feedback gain K, dlqr returns the infinite horizon solution S of the associated discrete-time Riccati equation

$$
4^{T} S A-S-\left(A^{T} S B+N\right)\left(B^{T} S B+R\right)^{-1}\left(B^{T} S A+N^{T}\right)+Q=0
$$

and the closed-loop eigenvalues $\mathrm{e}=\mathrm{eig}(\mathrm{a}-\mathrm{b} * \mathrm{~K})$. Note that K is derived from S by

$$
K=\left(B^{T} S B+R\right)^{-1}\left(B^{T} S A+N^{T}\right)
$$

Limitations The problem data must satisfy:

- The pair (A, B) is stabilizable.
- $R>0$ and $Q-N R^{-1} N^{T} \geq 0$
- $\left(Q-N R^{-1} N^{T}, A-B R^{-1} N^{T}\right)$ has no unobservable mode on the unit circle.

See Also
dare, lqgreg, lqr, lqrd, lqry

Purpose Solve discrete-time Lyapunov equations

Syntax
$X=\operatorname{dlyap}(A, Q)$
$X=$ dlyap(A,B,C)
X = dlyap(A,Q,[],E)
Description $\quad X=\operatorname{dlyap}(A, Q)$ solves the discrete-time Lyapunov equation

$$
A X A^{T}-X+Q=0
$$

where A and Q are n-by- n matrices.
The solution X is symmetric when Q is symmetric, and positive definite when \boldsymbol{Q} is positive definite and \boldsymbol{A} has all its eigenvalues inside the unit disk.
$\mathrm{X}=\operatorname{dlyap}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ solves the Sylvester equation $A X B^{T}-X+C=0$
where A, B, and C must have compatible dimensions but need not be square.
$X=\operatorname{dlyap}(A, Q,[], E)$ solves the generalized discrete-time Lyapunov equation $A X A^{T}-E X E^{T}+Q=0$
where Q is a symmetric matrix. The empty square brackets, [], are mandatory. If you place any values inside them, the function will error out.

Algorithm

Diagnostics
dlyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and SB04QD (SLICOT) for Sylvester equations.

The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of A satisfy $\alpha_{i} \alpha_{j} \neq 1$ for all (i, j). If this condition is violated, dlyap produces the error message

See Also covar, lyap

```
Purpose Square-root solver for continuous-time Lyapunov equations
Syntax
```

Description

Algorithm

See Also dlyap, lyapchol

Purpose Generate stable random discrete test model
Syntax $\quad \begin{array}{ll}\operatorname{sys}=\operatorname{drss}(n) \\ & \operatorname{drss}(n, p) \\ & \operatorname{drss}(n, m, p) \\ & \operatorname{drss}(n, p, m, s 1, \ldots s n)\end{array}$
Description
sys $=\operatorname{drss}(\mathrm{n})$ produces a random n-th order stable model with one input and one output, and returns the model in the state-space object sys.
drss(n, p) produces a random n-th order stable model with one input and p outputs.
drss(n, m, p) generates a random n-th order stable model with m inputs and p outputs.
drss($n, p, m, s 1, \ldots s n$) generates a $s 1$-by-sn array of random n-th order stable model with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has an unspecified sampling time. To generate transfer function or zero-pole-gain systems, convert sys using tf or zpk.

Example

Generate a random discrete LTI system with three states, two inputs, and two outputs.

```
sys = drss(3,2,2)
a =
```

	x1	x2	x3
x1	0.38630	-0.21458	-0.09914
x2	-0.23390	-0.15220	-0.06572
x3	-0.03412	0.11394	-0.22618

b $=$
u1 u2
$\begin{array}{lll}\mathrm{x} 1 & 0.98833 \quad 0.51551\end{array}$
$\begin{array}{lll}x 2 & 0 & 0.33395\end{array}$

x3	0.42350	0.43291	
$c=$			
	x1	x2	x3
y1	0.22595	0.76037	0
y2	0	0	0
$\mathrm{d}=$			
	u1	u2	
y1	0	0.68085	
y2	0.78333	0.46110	
Sampling time: unspecified			
Discrete-time			

See Also rss, tf, zpk

Purpose Sort discrete-time poles by magnitude
$\begin{array}{ll}\text { Syntax } & d \text { sort } \\ {[s, n d x]=\operatorname{dsort}(p)}\end{array}$
Description

Example
Sort the following discrete poles.

$$
\begin{aligned}
& p= \\
& -0.2410+0.5573 i \\
& -0.2410-0.5573 i \\
& 0.1503 \\
& -0.0972 \\
& -0.2590 \\
& \\
& s=\operatorname{dsort}(p) \\
& \\
& s= \\
& -0.2410+0.5573 i \\
& -0.2410-0.5573 i \\
& -0.2590 \\
& 0.1503 \\
& -0.0972
\end{aligned}
$$

Limitations

See Also descending order by magnitude. Unstable poles appear first. poles in s . used in the sort.
dsort sorts the discrete-time poles contained in the vector p in

When called with one lefthand argument, dsort returns the sorted
[s,ndx] = dsort(p) also returns the vector ndx containing the indices

The poles in the vector p must appear in complex conjugate pairs.

Purpose Specify descriptor state-space models

Syntax

```
sys = dss(a,b,c,d,e)
sys = dss(a,b,c,d,e,Ts)
sys
```


Description

sys $=d s s(a, b, c, d, e)$ creates the continuous-time descriptor state-space model

$$
\begin{aligned}
E \dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

The output sys is an SS model storing the model data (see LTI Objects). Note that ss produces the same type of object. If the matrix $D=0$, you can simply set d to the scalar 0 (zero).
sys $=$ dss($a, b, c, d, e, T s)$ creates the discrete-time descriptor model

$$
\begin{aligned}
E x[n+1] & =A x[n]+B u[n] \\
y[n] & =C x[n]+D u[n]
\end{aligned}
$$

with sample time Ts (in seconds).
sys $=\mathrm{dss}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{ltisys})$ creates a descriptor model with generic LTI properties inherited from the LTI model ltisys (including the sample time). See LTI Properties for an overview of generic LTI properties.

Any of the previous syntaxes can be followed by property name/property value pairs

```
'Property',Value
```

Each pair specifies a particular LTI property of the model, for example, the input names or some notes on the model history. See set and the example below for details.

Example

The command

```
sys = dss(1,2,3,4,5,'td',0.1,'inputname','voltage',...
    'notes','Just an example')
```

creates the model

$$
\begin{aligned}
5 \dot{x} & =x+2 u \\
y & =3 x+4 u
\end{aligned}
$$

with a 0.1 second input delay. The input is labeled 'voltage', and a note is attached to tell you that this is just an example.

See Also dssdata, get, set, ss

Purpose Extract descriptor state-space data

Syntax

$$
\begin{aligned}
& {[A, B, C, D, E]=\text { dssdata(sys) }} \\
& {[A, B, C, D, E, T s]=\text { dssdata(sys) }}
\end{aligned}
$$

Description

$[A, B, C, D, E]=$ dssdata(sys) returns the values of the A, B, C, D, and E matrices for the descriptor state-space model sys (see dss). dssdata is equivalent to ssdata for regular state-space models (i.e., when $\mathrm{E}=\mathrm{I}$). If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a system with delay-free dynamics).
[A,B,C,D,E,Ts] = dssdata(sys) also returns the sample time Ts.
Other properties of sys can be accessed with get or by direct structure-like referencing (e.g., sys.Ts).
For arrays of SS models with variable order, use the syntax

$$
[A, B, C, D, E]=\text { dssdata(sys,'cell') }
$$

to extract the state-space matrices of each model as separate cells in the cell arrays A, B, C, D, and E.

See Also
dss, get, getdelaymodel, ltimodels, ltiprops, ssdata

Purpose
 Sort continuous-time poles by real part

```
Syntax
s = esort(p)
[s,ndx] = esort(p)
```

esort sorts the continuous-time poles contained in the vector p by real part. Unstable eigenvalues appear first and the remaining poles are ordered by decreasing real parts.

When called with one left-hand argument, s = esort (p) returns the sorted eigenvalues in s .
[s,ndx] = esort(p) returns the additional argument ndx, a vector containing the indices used in the sort.

Example
 Sort the following continuous eigenvalues.

```
p
p =
    -0.2410+ 0.5573i
    -0.2410-0.5573i
        0.1503
        -0.0972
        -0.2590
esort(p)
ans =
    0.1503
    -0.0972
    -0.2410+ 0.5573i
    -0.2410- 0.5573i
    -0.2590
```

Limitations The eigenvalues in the vector p must appear in complex conjugate pairs.
See Also dsort, sort, eig, pole, pzmap, zero

Purpose
 Form state estimator given estimator gain

Syntax

```
est = estim(sys,L)
est = estim(sys,L,sensors,known)
```

Description
est $=$ estim(sys,L) produces a state/output estimator est given the plant state-space model sys and the estimator gain L. All inputs w of sys are assumed stochastic (process and/or measurement noise), and all outputs y are measured. The estimator est is returned in state-space form (SS object). For a continuous-time plant sys with equations

$$
\begin{aligned}
& \dot{x}=A x+B w \\
& y=C x+D w
\end{aligned}
$$

estim generates plant output and state estimates \hat{y} and \hat{x} as given by the following model.

$$
\begin{aligned}
\dot{\hat{x}} & =A \hat{x}+L(y-C \hat{x}) \\
{\left[\begin{array}{l}
\hat{y} \\
\hat{x}
\end{array}\right] } & =\left[\begin{array}{l}
C \\
I
\end{array}\right] \hat{x}
\end{aligned}
$$

The discrete-time estimator has similar equations.
est = estim(sys,L,sensors,known) handles more general plants sys with both known inputs u and stochastic inputs w, and both measured outputs y and nonmeasured outputs z.

$$
\begin{aligned}
& \dot{x}=A x+B_{1} w+B_{2} u \\
& {\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] x+\left[\begin{array}{l}
D_{11} \\
D_{21}
\end{array}\right] w+\left[\begin{array}{l}
D_{12} \\
D_{22}
\end{array}\right] u}
\end{aligned}
$$

The index vectors sensors and known specify which outputs y are measured and which inputs u are known. The resulting estimator est uses both u and y to produce the output and state estimates.

estim handles both continuous- and discrete-time cases. You can use the functions place (pole placement) or kalman (Kalman filtering) to design an adequate estimator gain L. Note that the estimator poles (eigenvalues of $A-L C$) should be faster than the plant dynamics (eigenvalues of A) to ensure accurate estimation.

Example Consider a state-space model sys with seven outputs and four inputs. Suppose you designed a Kalman gain matrix L using outputs 4, 7, and 1 of the plant as sensor measurements, and inputs 1,4 , and 3 of the plant as known (deterministic) inputs. You can then form the Kalman estimator by

```
sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)
```

See the function kalman for direct Kalman estimator design.

See Also
 kalman, place, reg

Purpose Evaluate frequency response at given frequency

Syntax
 frsp = evalfr(sys,f)

Description

Example

Limitations The response is not finite when f is a pole of sys.
See Also bode, freqresp, sigma

Purpose Create pure continuous-time delays

Syntax
 $d=\exp (t a u, s)$

Description
$d=\exp (t a u, s)$
creates pure continuous-time delays. The transfer function of a pure delay tau is

$$
d(s)=\exp \left(-t a u^{*} s\right)
$$

You can specify this transfer function using exp.

$$
\begin{aligned}
& \mathrm{s}=\operatorname{zpk}\left(\mathrm{s}^{\prime}\right) \\
& \mathrm{d}=\exp \left(-\tan { }^{*}\right)
\end{aligned}
$$

More generally, given a 2D array M,

$$
\begin{aligned}
& s=\operatorname{zpk}\left(s^{\prime}\right) \\
& D=\exp \left(-M^{*} s\right)
\end{aligned}
$$

creates an array D of pure delays where
$D(i, j)=\exp (-M(i, j) * s)$
All entries of M should be non negative for causality.

See Also
 zpk, tf

Purpose Concatenate FRD models along frequency dimension

Syntax sys $=$ fcat $($ sys 1, sys $2, \ldots)$
Description
sys $=$ fcat(sys1,sys2,...) takes two or more FRD models and merges their frequency responses into a single FRD model sys. The frequency vectors of sys1, sys $2, \ldots$ should not intersect and are merged together. The resulting frequency vector is sorted by increasing frequency.

See Also fselect, interp, frd

Purpose Feedback connection of two LTI models

Syntax sys = feedback(sys1,sys2)

Description
sys = feedback(sys1, sys2) returns an LTI model sys for the negative feedback interconnection.

The closed-loop model sys has u as input vector and y as output vector. The LTI models sys1 and sys2 must be both continuous or both discrete with identical sample times. Precedence rules are used to determine the resulting model type (see Precedence Rules).

To apply positive feedback, use the syntax

```
sys = feedback(sys1,sys2,+1)
```

By default, feedback(sys1, sys2) assumes negative feedback and is equivalent to feedback(sys1, sys2, -1).
Finally,

```
sys = feedback(sys1,sys2,feedin,feedout)
```

computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys 1 and specifies which inputs u are involved in the feedback loop. Similarly, feedout specifies which outputs y of sys 1 are used for feedback. The resulting LTI model sys has the same inputs and outputs as sys1 (with their order preserved). As before, negative feedback is applied by default and you must use

```
sys = feedback(sys1,sys2,feedin,feedout,+1)
```

to apply positive feedback.
For more complicated feedback structures, use append and connect.

Remark

You can specify static gains as regular matrices, for example,

```
sys = feedback(sys1,2)
```

However, at least one of the two arguments sys1 and sys2 should be an LTI object. For feedback loops involving two static gains k1 and k2, use the syntax

```
sys = feedback(tf(k1),k2)
```


Examples
 Example 1

To connect the plant

$$
G(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

with the controller

$$
H(s)=\frac{5(s+2)}{s+10}
$$

using negative feedback, type

```
G = tf([l2 5 1],[\begin{array}{lll}{1}&{2}&{3}\end{array}],'inputname','torque',...
    'outputname','velocity');
H = zpk(-2,-10,5)
Cloop = feedback(G,H)
```

and MATLAB returns

```
Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)
    (s+3.419) (s^2 + 1.763s + 1.064)
```

The result is a zero-pole-gain model as expected from the precedence rules. Note that Cloop inherited the input and output names from G.

Example 2

Consider a state-space plant P with five inputs and four outputs and a state-space feedback controller K with three inputs and two outputs. To connect outputs 1,3 , and 4 of the plant to the controller inputs, and the controller outputs to inputs 4 and 2 of the plant, use

```
feedin = [4 2];
feedout = [11 3 4];
Cloop = feedback(P,K,feedin,feedout)
```


Example 3

You can form the following negative-feedback loops

by

```
Cloop = feedback(G,1) % left diagram
Cloop = feedback(1,G)b % right diagram
```


Limitations

The feedback connection should be free of algebraic loop. If D_{1} and D_{2} are the feedthrough matrices of sys1 and sys2, this condition is equivalent to:

- $I+D_{1} D_{2}$ nonsingular when using negative feedback
- $I-D_{1} D_{2}$ nonsingular when using positive feedback.

See Also series, parallel, connect

Purpose Specify discrete transfer functions in DSP format
Syntax sys $=$ filt (num, den)
sys = filt(num,den,Ts)
sys = filt(M)

Description

Arguments

In digital signal processing (DSP), it is customary to write transfer functions as rational expressions in z^{-1} and to order the numerator and denominator terms in ascending powers of z^{-1}, for example,

$$
H\left(z^{-1}\right)=\frac{2+z^{-1}}{1+0.4 z^{-1}+2 z^{-2}}
$$

The function filt is provided to facilitate the specification of transfer functions in DSP format.
sys $=$ filt (num,den) creates a discrete-time transfer function sys with numerator(s) num and denominator(s) den. The sample time is left unspecified (sys.Ts $=-1$) and the output sys is a TF object.
sys $=$ filt (num,den,Ts) further specifies the sample time Ts (in seconds).
sys $=$ filt (M) specifies a static filter with gain matrix M.
Any of the previous syntaxes can be followed by property name/property value pairs of the form
'Property', Value

Each pair specifies a particular LTI property of the model, for example, the input names or the transfer function variable. See LTI Properties and the set entry for additional information on LTI properties and admissible property values.

For SISO transfer functions, num and den are row vectors containing the numerator and denominator coefficients ordered in ascending powers
of z^{-1}. For example, den $=\left[\begin{array}{lll}1 & 0.4 & 2\end{array}\right]$ represents the polynomial $1+0.4 z^{-1}+2 z^{-2}$.

MIMO transfer functions are regarded as arrays of SISO transfer functions (one per I/O channel), each of which is characterized by its numerator and denominator. The input arguments num and den are then cell arrays of row vectors such that:

- num and den have as many rows as outputs and as many columns as inputs.
- Their (i, j) entries num $\{i, j\}$ and den $\{i, j\}$ specify the numerator and denominator of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row vector representation of this common denominator. See also MIMO Transfer Function Models for alternative ways to specify MIMO transfer functions.

Remark

filt behaves as tf with the Variable property set to ' $z^{\wedge}-1$ ' or ' q^{\prime} '. See tf entry below for details.

Example Typing the commands

```
num = {1 , [1 0.3]}
den = {[\begin{array}{lll}{1}&{1}&{2}\end{array}],[\begin{array}{ll}{5}&{2}\end{array}]}
H = filt(num,den,'inputname',{'channel1' 'channel2'})
```

creates the two-input digital filter

$$
H\left(z^{-1}\right)=\left[\begin{array}{cc}
\frac{1}{1+z^{-1}+2 z^{-2}} & \frac{1+0.3 z^{-1}}{5+2 z^{-1}}
\end{array}\right]
$$

with unspecified sample time and input names 'channel1' and 'channel2'.

See Also tf, zpk, ss

Purpose Pointwise peak gain of FRD model

```
Syntax
fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)
```

Description
fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency response contained in the FRD model sys, that is, the peak gain at each frequency point. The output fnrm is an FRD object containing the peak gain across frequencies.
fnrm = fnorm(sys, ntype) computes the frequency response gains using the matrix norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE values.

See Also
lti/norm, frd/abs

Purpose Create or convert to frequency-response data models
Syntax

sys = frd(response,frequency)
sys = frd(response,frequency,Ts)
sys = frd
sysfrd = frd(sys,frequency)
sysfrd = frd(sys,frequency,'Units',units)

Description

sys $=$ frd(response,frequency) creates an FRD model sys from the frequency response data stored in the multidimensional array response. The vector frequency represents the underlying frequencies for the frequency response data. See Data Format for the Argument Response in FRD Models on page 2-95 for a list of response data formats.
sys $=$ frd(response,frequency,Ts) creates a discrete-time FRD model sys with scalar sample time Ts. Set Ts $=-1$ to create a discrete-time FRD model without specifying the sample time.
sys = frd creates an empty FRD model.
The input argument list for any of these syntaxes can be followed by property name/property value pairs of the form

```
'PropertyName',PropertyValue
```

You can use these extra arguments to set the various properties of FRD models (see the set command, or LTI Properties and Model-Specific Properties). These properties include 'Units'. The default units for FRD models are in 'rad/s'.
To force an FRD model sys to inherit all of its generic LTI properties from any existing LTI model refsys, use the syntax

```
sys = frd(response,frequency,ltisys)
```

sysfrd = frd(sys,frequency) converts a TF, SS, or ZPK model to an FRD model. The frequency response is computed at the frequencies provided by the vector frequency.
sysfrd $=$ frd(sys,frequency, 'Units', units) converts an FRD model from a TF, SS, or ZPK model while specifying the units for frequency to be units ('rad/s' or ' Hz ').

Arguments

When you specify a SISO or MIMO FRD model, or an array of FRD models, the input argument frequency is always a vector of length $N f$, where Nf is the number of frequency data points in the FRD. The specification of the input argument response is summarized in the following table.

Data Format for the Argument Response in FRD Models

Model Form	Response Data Format
SISO model	Vector of length Nf for which response (i) is the frequency response at the frequency frequency(i)
MIMO model with Ny outputs and Nu inputs	Ny-by-Nu-by-Nf multidimensional array for which response (i, j, k) specifies the frequency response from input j to output i at frequency frequency (k)
S1-by-...-by-Sn array of models with Ny outputs and Nu inputs	Multidimensional array of size [Ny Nu S1... Sn] for which response ($i, j, k,:$) specifies the array of frequency response data from input j to output i at frequency frequency (k)

Remarks

Example

See Frequency Response Data (FRD) Models for more information on single FRD models, and Creating LTI Models for information on building arrays of FRD models.

Type the commands

```
freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)
```

to create a SISO FRD model.

See Also
 chgunits, frdata, set, ss, tf, zpk

Purpose Access data for frequency response data (FRD) object

Syntax

Description

Arguments

Example

[response,freq] = frdata(sys)
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys) returns the response data and frequency samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at Nf frequencies:

- response is an Ny-by-Nu-by-Nf multidimensional array where the (i, j) entry specifies the response from input j to output i.
- freq is a column vector of length Nf that contains the frequency samples of the FRD model.

See Data Format for the Argument Response in FRD Models on page 2-95 for more information on the data format for FRD response data.

For SISO FRD models, the syntax

```
[response,freq] = frdata(sys,'v')
```

forces frdata to return the response data and frequencies directly as column vectors rather than as cell arrays (see example below).
[response,freq,Ts] = frdata(sys) also returns the sample time Ts.
Other properties of sys can be accessed with get or by direct structure-like referencing (e.g., sys.Units).

The input argument sys to frdata must be an FRD model.
Typing the commands

```
freq = logspace(1,2,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq);
[resp,freq] = frdata(sys,'v')
```


frdata

returns the FRD model data

```
resp =
    0.2040 + 0.4565i
        2.4359 - 4.3665i
freq =
            1 0
                            100
```

See Also
frd, get, set

Purpose

Syntax

Description

Remark

Arguments

Frequency response over frequency grid
H = freqresp(sys,w)
$H=$ freqresp(sys,w) computes the frequency response of the LTI model sys at the real frequency points specified by the vector w . sys can be a TF, SS, ZPK, or FRD object. The frequencies must be in rad/s. For single LTI Models, freqresp (sys, w) returns a 3-D array H with the frequency as the last dimension (see "Arguments" below). For LTI arrays of size [Ny Nu S1 ... Sn], freqresp(sys,w) returns a [Ny-by-Nu-by-S1-by-...-by-Sn] length (w) array.

In continuous time, the response at a frequency ω is the transfer function value at $s=j \omega$. For state-space models, this value is given by

$$
H(j \omega)=D+C(j \omega I-A)^{-1} B
$$

In discrete time, the real frequencies $w(1), \ldots, w(N)$ are mapped to points on the unit circle using the transformation $z=e^{j \omega T}$
where T_{s} is the sample time. The transfer function is then evaluated at the resulting z values. The default $T_{s}=1$ is used for models with unspecified sample time.

If sys is an FRD model, freqresp(sys,w), w can only include frequencies in sys.frequency. Interpolation and extrapolation are not supported. To interpolate an FRD model, use interp.

The output argument H is a 3-D array with dimensions
(number of outputs) \times (number of inputs) \times (length of w)
For SISO systems, $\mathrm{H}(1,1, k)$ gives the scalar response at the frequency $w(k)$. For MIMO systems, the frequency response at $w(k)$ is $H(:,:, k)$, a matrix with as many rows as outputs and as many columns as inputs.

Example Compute the frequency response of

$$
P(s)=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
$$

at the frequencies $\omega=1,10,100$. Type

$$
\begin{aligned}
& w=\left[\begin{array}{lll}
1 & 10 & 100
\end{array}\right] \\
& H=\operatorname{freqresp}(P, w) \\
& H(:,:, 1)=
\end{aligned}
$$

$$
\begin{array}{cc}
0 & 0.5000 \\
-0.2000+0.6000 i & 1.0000
\end{array}
$$

$$
\mathrm{H}(:,:, 2)=
$$

$$
\begin{array}{cl}
0 & 0.0099-0.0990 i \\
0.9423+ & 0.2885 i \\
1.0000
\end{array}
$$

$$
H(:,:, 3)=
$$

$$
\begin{array}{cl}
0 & 0.0001-0.0100 i \\
0.9994+ & 0.0300 i \\
1.0000
\end{array}
$$

The three displayed matrices are the values of $P(j \omega)$ for $\omega=1, \quad \omega=10, \quad \omega=100$
The third index in the 3-D array H is relative to the frequency vector w , so you can extract the frequency response at $\omega=10 \mathrm{rad} / \mathrm{sec}$ by

```
H(:, :,w==10)
ans =
```

0	$0.0099-0.0990 i$
$0.9423+0.2885 i$	1.0000

[^0]Purpose Select frequency points or range in FRD model
Syntax subsys $=$ fselect (sys,fmin,fmax) subsys = fselect(sys,index)
Description
subsys $=$ fselect (sys,fmin, fmax) takes an FRD model sys and selects the portion of the frequency response between the frequencies fmin and fmax. The selected range [fmin, fmax] should be expressed in the FRD model units.
subsys = fselect(sys,index) selects the frequency points specified by the vector of indices index. The resulting frequency grid is
sys.Frequency(index)
sys.Frequency(index)

See Also
interp, fcat, frd

Purpose

Generalized solver for continuous-time algebraic Riccati equation

Syntax

```
[X,L,report] = gcare(H,J,ns)
[X1,X2,D,L] = gcare(H,...,'factor')
```


Description

$[\mathrm{X}, \mathrm{L}$, report] $=\operatorname{gcare}(\mathrm{H}, \mathrm{J}, \mathrm{ns})$ computes the unique stabilizing solution X of the continuous-time algebraic Riccati equation associated with a Hamiltonian pencil of the form

$$
H-t J=\left[\begin{array}{ccc}
A & F & S 1 \\
G & -A^{\prime} & -S 2 \\
S 2^{\prime} & S 1^{\prime} & R
\end{array}\right]-\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & E^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The optional input ns is the row size of the A matrix. Default values for J and ns correspond to $E=I$ and $R=[]$.

Optionally, gcare returns the vector L of closed-loop eigenvalues and a diagnosis report with value:

- - 1 if the Hamiltonian pencil has $j w$-axis eigenvalues
- -2 if there is no finite stabilizing solution X
- 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.
 and a diagonal scaling matrix D such that $X=D^{*}(X 2 / X 1) * D$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

See Also care, gdare

Purpose Generalized solver for discrete-time algebraic Riccati equation

Syntax
 ```[X,L,report] = gdare(H,J,ns) \\ [X1,X2,D,L] = gdare(H,J,NS,'factor')```

Description

$[\mathrm{X}, \mathrm{L}$, report] $=$ gdare $(\mathrm{H}, \mathrm{J}, \mathrm{ns})$ computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation associated with a Symplectic pencil of the form

$$
H-t J=\left[\begin{array}{ccc}
A & F & B \\
-Q & E^{\prime} & -S \\
S^{\prime} & 0 & R
\end{array}\right]-\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & A^{\prime} & 0 \\
0 & -B^{\prime} & 0
\end{array}\right]
$$

The third input ns is the row size of the A matrix.
Optionally, gdare returns the vector L of closed-loop eigenvalues and a diagnosis report with value:

- -1 if the Symplectic pencil has eigenvalues on the unit circle
- -2 if there is no finite stabilizing solution X
- 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.
[$\mathrm{X} 1, \mathrm{X} 2, \mathrm{D}, \mathrm{L}]=$ gdare ($\mathrm{H}, \mathrm{J}, \mathrm{NS}$, 'factor') returns two matrices $\mathrm{X} 1, \mathrm{X} 2$ and a diagonal scaling matrix D such that $X=D *(X 2 / X 1) * D$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the Symplectic pencil has eigenvalues on the unit circle.

See Also dare, gcare

Purpose Generate test input signals for 1sim

Syntax
[u,t] = gensig(type,tau)
[$\mathrm{u}, \mathrm{t}]=$ gensig(type,tau,Tf,Ts)
$[\mathrm{u}, \mathrm{t}]=$ gensig(type, tau) generates a scalar signal u of class type and with period tau (in seconds). The following types of signals are available.

```
'sin' Sine wave.
'square' Square wave.
'pulse' Periodic pulse.
```

gensig returns a vector t of time samples and the vector u of signal values at these samples. All generated signals have unit amplitude.
$[\mathrm{u}, \mathrm{t}]=$ gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the signal and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to lsim and simulate the response of a single-input linear system to the specified signal. Since t is uniquely determined by Tf and Ts, you can also generate inputs for multi-input systems by repeated calls to gensig.

Example

Generate a square wave with period 5 seconds, duration 30 seconds, and sampling every 0.1 second.

```
[u,t] = gensig('square',5,30,0.1)
```

Plot the resulting signal.

```
plot(t,u)
axis([0 30 -1 2])
```


gensig

Purpose

Access LTI property values
Syntax
Value = get(sys,'PropertyName')
Struct = get(sys)

Description

Example

 generic and model-specific LTI properties). and the property values as field values.Without left-side argument,

```
get(sys)
```

displays all properties of sys and their values.

Value $=$ get (sys, 'PropertyName') returns the current value of the property PropertyName of the LTI model sys. The string 'PropertyName' can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). You can specify any generic LTI property, or any property specific to the model sys (see LTI Properties for details on

Struct $=$ get (sys) converts the TF, SS, or ZPK object sys into a standard MATLAB structure with the property names as field names

Consider the discrete-time SISO transfer function defined by

```
h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')
```

You can display all LTI properties of h with

```
get(h)
            num: {[0 1]}
            den: {[1 2]}
            ioDelay: 0
        Variable: 'z'
            Ts: 0.1
        InputDelay: 0
        OutputDelay: 0
            InputName: {'voltage'}
```

```
    OutputName: {''}
    InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]
            Name: ''
            Notes: {}
UserData: 'hello'
or query only about the numerator and sample time values by
```

```
    get(h,'num')
```

 get(h,'num')
 ans =
 [1x2 double]
 and
get(h,'ts')
ans =
0.1000

```

Because the numerator data (num property) is always stored as a cell array, the first command evaluates to a cell array containing the row vector [0 1].

\section*{Remark \\ An alternative to the syntax}
```

Value = get(sys,'PropertyName')

```
is the structure-like referencing
Value = sys.PropertyName
For example,
sys.Ts
sys.a
sys.user
return the values of the sample time, \(A\) matrix, and UserData property of the (state-space) model sys.

See Also frdata, set, ssdata, tfdata, zpkdata

\section*{Purpose}

State-space representation of internal delays

\section*{Syntax}
```

[[A,B1,B2,C1,C2,D11,D12,D21,D22,E,tau] = getdelaymodel(sys,
'mat')
[H,tau] = getdelaymodel(sys,'lft')

```

\section*{Description}
[[A,B1,B2,C1, C2,D11,D12,D21,D22,E,tau] =
getdelaymodel(sys, 'mat') returns the matrices \(\mathrm{A}, \mathrm{B} 1, \mathrm{~B} 2\), etc. and vector tau of internal delays for the state-space model sys. The E matrix is set to [] for explicit models with no E matrix.

State-space models with internal delays are represented by differential-algebraic equations of the form:

Edx/dt \(=A x+B 1 u+B 2 w\)
\(\mathrm{y}=\mathrm{C} 1 \mathrm{x}+\mathrm{D} 11 \mathrm{u}+\mathrm{D} 12 \mathrm{w}\)
\(\mathrm{z}=\mathrm{C} 2 \mathrm{x}+\mathrm{D} 21 \mathrm{u}+\mathrm{D} 22 \mathrm{w}\)
\(\mathrm{w}(\mathrm{t})=\mathrm{z}(\mathrm{t}-\mathrm{tau})\)
or their discrete-time counterparts:
\(\mathrm{Ex}[\mathrm{k}+1]=\mathrm{Ax}[\mathrm{k}]+\mathrm{B} 1 \mathrm{u}[\mathrm{k}]+\mathrm{B} 2 \mathrm{w}[\mathrm{k}]\)
\(\mathrm{y}[\mathrm{k}]=\mathrm{C} 1 \mathrm{x}[\mathrm{k}]+\mathrm{D} 11 \mathrm{u}[\mathrm{k}]+\mathrm{D} 12 \mathrm{w}[\mathrm{k}]\)
\(\mathrm{z}[\mathrm{k}]=\mathrm{C} 2 \mathrm{x}[\mathrm{k}]+\mathrm{D} 21 \mathrm{u}[\mathrm{k}]+\mathrm{D} 22 \mathrm{w}[\mathrm{k}]\)
\(\mathrm{w}[\mathrm{k}]=\mathrm{z}[\mathrm{k}-\mathrm{tau}]\)
where \(u\),y are the external inputs and outputs, and tau is the vector of internal delays. These equations correspond to this block diagram:
where \(\mathrm{H}(\mathrm{s})\) is the delay-free state-space model mapping [u;w] to [y;z].
[H,tau] = getdelaymodel(sys,'lft') returns the state-space model \(H\) and vector tau of internal delays making up the block diagram above.

Note that for models without internal delays:
- Only \(A, B 1, C 1, D 11\) (and possibly E) are non-empty
- tau is empty and H is equal to sys.

See Also
delayss, dss, ss, setdelaymodel

\section*{getoptions}

Purpose Return @plotOptions handle or plot options property
Syntax
\(\mathrm{p}=\) getoptions(h)
p = getoptions(h, propertyname)

\section*{Description}
\(p=\) getoptions (h) returns the plot options handle associated with plot handle \(h\). p contains all the settable options for a given response plot.
\(p\) = getoptions(h, propertyname) returns the specified options property, propertyname, for the plot with handle \(h\). You can use this to interrogate a plot handle. For example,
p = getoptions(h,'Grid')
returns 'on' if a grid is visible, and 'off' when it is not.

\section*{See Also}
setoptions

\section*{Purpose}

Controllability and observability grammians

\section*{Syntax gram}

Description
gram calculates controllability and observability grammians. You can use grammians to study the controllability and observability properties of state-space models and for model reduction [1] . They have better numerical properties than the controllability and observability matrices formed by ctrb and obsv.

Given the continuous-time state-space model
\[
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
\]
the controllability grammian is defined by
\[
W_{c}=\int_{0}^{\infty} e^{A \tau} B B^{T} e^{A^{T} \tau} d \tau
\]
and the observability grammian by
\[
W_{o}=\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau
\]

The discrete-time counterparts are
\[
W_{c}=\sum_{k=0}^{\infty} A^{k} B B^{T}\left(A^{T}\right)^{k}, \quad W_{o}=\sum_{k=0}^{\infty}\left(A^{T}\right)^{k} C^{T} C A^{k}
\]

The controllability grammian is positive definite if and only if \((A, B)\) is controllable. Similarly, the observability grammian is positive definite if and only if \((C, A)\) is observable.
Use the commands
\[
\begin{array}{ll}
\text { Wc }=\operatorname{gram}(s y s, ' c ') & \text { \% controllability grammian } \\
\text { Wo }=\operatorname{gram}(\text { sys,'o' }) & \text { \% observability grammian }
\end{array}
\]
to compute the grammians of a continuous or discrete system. The LTI model sys must be in state-space form.

The controllability grammian \(W_{c}\) is obtained by solving the continuous-time Lyapunov equation
\[
A W_{c}+W_{c} A^{T}+B B^{T}=0
\]
or its discrete-time counterpart
\[
A W_{c} A^{T}-W_{c}+B B^{T}=0
\]

Similarly, the observability grammian \(W_{o}\) solves the Lyapunov equation
\[
A^{T} W_{o}+W_{o} A+C^{T} C=0
\]
in continuous time, and the Lyapunov equation
\[
A^{T} W_{o} A-W_{o}+C^{T} C=0
\]
in discrete time.

Limitations

References
See Also

The \(A\) matrix must be stable (all eigenvalues have negative real part in continuous time, and magnitude strictly less than one in discrete time).
[1] Kailath, T., Linear Systems, Prentice-Hall, 1980.
balreal, ctrb, lyap, dlyap, obsv

Purpose True for LTI model with time delays

\section*{Syntax hasdelay (sys)}

Description hasdelay(sys) returns 1 (true) if the LTI model sys has input delays, output delays, or I/O delays, and 0 (false) otherwise.

See Also delay2z, totaldelay

\section*{Purpose Compute Hankel singular values of LTI model}
```

Syntax
hsv = hsvd(sys)
hsvd(sys)
[hsv,baldata] = hsvd(sys)

```

\section*{Description}
hsv = hsvd(sys) computes the Hankel singular values hsv of the LTI model sys. In state coordinates that equalize the input-to-state and state-to-output energy transfers, the Hankel singular values measure the contribution of each state to the input/output behavior. Hankel singular values are to model order what singular values are to matrix rank. In particular, small Hankel singular values signal states that can be discarded to simplify the model (see balred).

For models with unstable poles, hsvd only computes the Hankel singular values of the stable part and entries of hsv corresponding to unstable modes are set to Inf. Use
```

hsv = hsvd(sys,'AbsTol',ATOL,...
'RelTol',RTOL,'Offset',ALPHA)

```
to specify additional options for the stable/unstable decomposition, see STABSEP for details. The default values are ATOL=0, RTOL=1e-8, and ALPHA=1e-8.
hsvd(sys) displays a plot of the Hankel singular values.
[hsv, baldata] = hsvd(sys) returns additional data to speed up model order reduction with balred. For example
```

sys = rss(20); % 20-th order model
[hsv,baldata] = hsvd(sys);
rsys = balred(sys,8:10,'Balancing',baldata);
bode(sys,'b',rsys,'r--')

```
computes three approximations of sys of orders \(8,9,10\).
There is more than one hsvd available. Type

\section*{help lti/hsvd}
for more information.

\section*{Algorithm}

The AbsTol, RelTol, and ALPHA parameters are only used for models with unstable or marginally stable dynamics. Because Hankel singular values are only meaningful for stable dynamics, hsvd must first split such models into the sum of their stable and unstable parts:
\[
G=G \_s+G \_n s
\]

This decomposition can be tricky when the model has modes close to the stability boundary (e.g., a pole at \(s=-1 e-10\) ), or clusters of modes on the stability boundary (e.g., double or triple integrators). While hsvd is able to overcome these difficulties in most cases, it sometimes produces unexpected results such as

1 Large Hankel singular values for the stable part.
This happens when the stable part G_s contains some poles very close to the stability boundary. To force such modes into the unstable group, increase the 'Offset' option to slightly grow the unstable region.

2 Too many modes are labeled "unstable." For example, you see 5 red bars in the HSV plot when your model had only 2 unstable poles.

The stable/unstable decomposition algorithm has built-in accuracy checks that reject decompositions causing a significant loss of accuracy in the frequency response. Such loss of accuracy arises, e.g., when trying to split a cluster of stable and unstable modes near \(s=0\). Because such clusters are numerically equivalent to a multiple pole at \(s=0\), it is actually desirable to treat the whole cluster as unstable. In some cases, however, large relative errors in low-gain frequency bands can trip the accuracy checks and lead to a rejection of valid decompositions. Additional modes are then absorbed into the unstable part G_ns, unduly increasing its order.

Such issues can be easily corrected by adjusting the AbsTol and RelTol tolerances. By setting AbsTol to a fraction of smallest gain of interest in your model, you tell the algorithm to ignore errors below a certain gain threshold. By increasing RelTol, you tell the algorithm to sacrifice some relative model accuracy in exchange for keeping more modes in the stable part G_s.

This example illustrates the use of offset.
First, create a system with a stable pole very near to 0 , then calculate the Hankel singular values.
```

sys = zpk([1 2],[-1 -2 -3 -10 -1e-7],1)
hsvd(sys)
Zero/pole/gain:
(s-1) (s-2)
(s+1) (s+2) (s+3) (s+10) (s+1e-007)

```


For a better view of the Hankel singular values, switch the plot to log scale by selecting Y Scale \(>\mathbf{L o g}\) from the right-click menu.


Notice the dominant Hankel singular value with 1e5 magnitude, due to the mode \(s=-1 e-7\) near the imaginary axis. Set the offset \(=1 e-6\) to treat this mode as unstable
```

hsvd(sys,'Offset',1e-7)

```


The dominant Hankel singular value is now shown as unstable.
See Also balred, balreal

Purpose Plot Hankel singular values and return plot handle
```

Syntax h = hsvplot(sys)
hsvplot(sys)
hsvplot(sys, AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)
hsvplot(AX,sys,...)

```

Description

\section*{Example}

Use the plot handle to change plot options in the Hankel singular values plot.
```

sys = rss(20);
h = hsvplot(sys,'AbsTol',1e-6);
% Switch to log scale and modify Offset parameter
setoptions(h,'Yscale','log','Offset',0.3)

```

See Also getoptions, hsvd, setoptions

Purpose Imaginary part of FRD model
Syntax imagfrd = imag(sys)
Description imagfrd = imag(sys) computes the imaginary part of the frequency response contained in the FRD model sys, including the contribution of input, output, and I/O delays. The output imagfrd is an FRD object containing the values of the imaginary part across frequencies.

See Also frd/real, frd/abs

Purpose Impulse response of LTI model
Syntax impulse
impulse(sys)
impulse(sys,t)

\section*{Description}
impulse calculates the unit impulse response of a linear system. The impulse response is the response to a Dirac input \(\delta(t)\) for continuous-time systems and to a unit pulse at \(t=0\) for discrete-time systems. Zero initial state is assumed in the state-space case. When invoked without left-hand arguments, this function plots the impulse response on the screen.
impulse(sys) plots the impulse response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. The impulse response of multi-input systems is the collection of impulse responses for each input channel. The duration of simulation is determined automatically to display the transient behavior of the response.
impulse(sys,t) sets the simulation horizon explicitly. You can specify either a final time \(t=T f i n a l\) (in seconds), or a vector of evenly spaced time samples of the form
t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For continuous systems, dt becomes the sample time of the discretized simulation model (see "Algorithm"), so make sure to choose dt small enough to capture transient phenomena.

To plot the impulse responses of several LTI models sys1,..., sysN on a single figure, use
```

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,t)

```

As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,
```

impulse(sys1,'y:',sys2,'g--')

```

See "Plotting and Comparing Multiple Systems" and the bode entry in this section for more details.
When invoked with left-side arguments,
```

[y,t] = impulse(sys)
[y,t,x] = impulse(sys) % for state-space models only
y = impulse(sys,t)

```
return the output response \(y\), the time vector \(t\) used for simulation, and the state trajectories \(x\) (for state-space models only). No plot is drawn on the screen. For single-input systems, y has as many rows as time samples (length of \(t\) ), and as many columns as outputs. In the multi-input case, the impulse responses of each input channel are stacked up along the third dimension of \(y\). The dimensions of \(y\) are then
(length of \(t) \times\) (number of outputs) \(\times\) (number of inputs)
and \(y(:,:, j)\) gives the response to an impulse disturbance entering the \(j\) th input channel. Similarly, the dimensions of \(x\) are
(length of \(t) \times\) (number of states) \(\times\) (number of inputs)
Example
To plot the impulse response of the second-order state-space model
\[
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
\]
use the following commands.
```

a = [-0.5572 -0.7814;0.7814 0];
b = [1 -1;0 2];
c = [1.9691 6.4493];
sys = ss(a,b,c,0);
impulse(sys)

```


The left plot shows the impulse response of the first input channel, and the right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by
[y,t] = impulse(sys)

Because this system has two inputs, y is a 3-D array with dimensions
```

size(y)

```
```

ans=

```

101
1
2
(the first dimension is the length of t ). The impulse response of the first input channel is then accessed by
\[
y(:,:, 1)
\]

\section*{Algorithm}

\section*{Limitations}

See Also

Continuous-time models are first converted to state space. The impulse response of a single-input state-space model
\[
\begin{aligned}
& \dot{x}=A x+b u \\
& y=C x
\end{aligned}
\]
is equivalent to the following unforced response with initial state \(b\).
\[
\begin{aligned}
& \dot{x}=A x, \quad x(0)=b \\
& y=C x
\end{aligned}
\]

To simulate this response, the system is discretized using zero-order hold on the inputs. The sampling period is chosen automatically based on the system dynamics, except when a time vector \(t=0: d t: T f\) is supplied ( dt is then used as sampling period).

The impulse response of a continuous system with nonzero \(D\) matrix is infinite at \(t=0\). impulse ignores this discontinuity and returns the lower continuity value \(C b\) at \(t=0\).
ltiview, step, initial, lsim

Purpose Plot impulse response and return plot handle

Syntax
```

h = impulseplot(sys)
impulseplot(sys)
impulseplot(sys,Tfinal)
impulseplot(sys,t)
impulseplot(sys1,sys2,...,t)
impulseplot(AX,...)
impulseplot(..., plotoptions)

```

\section*{Description}
\(\mathrm{h}=\) impulseplot(sys) plots the impulse response of the LTI model sys (created with either tf, zpk, or ss). For multiinput models, independent impulse commands are applied to each input channel. The time range and number of points are chosen automatically. For continuous systems with direct feedthrough, the infinite pulse at \(\mathrm{t}=0\) is disregarded. impulseplot also returns the plot handle, h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help timeoptions

```
for a list of available plot options.
impulseplot(sys) plots the impulse response of the LTI model without returning the plot handle.
impulseplot (sys, Tfinal) simulates the impulse response from \(\mathrm{t}=0\) to the final time \(t=T f i n a l\). For discrete-time systems with unspecified sampling time, Tfinal is interpreted as the number of samples.
impulseplot (sys, \(t\) ) uses the user-supplied time vector \(t\) for simulation. For discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the sample time of a discrete approximation to the continuous system. The impulse is always assumed to arise at \(t=0\) (regardless of Ti ).
impulseplot(sys1, sys2, ...,t) plots the impulse response of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The time vector t is optional. You can also specify a color, line style, and marker for each system, as in
```

impulseplot(sys1,'r',sys2,'y--',sys3,'gx')

```
impulseplot (AX, ...) plots into the axes with handle AX.
impulseplot(..., plotoptions) plots the impulse response with the options specified in plotoptions. Type
```

help timeoptions

```
for more detail.

\section*{Example}

See Also

Normalize the impulse response of a third-order system.
```

sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');

```
getoptions, impulse, setoptions

Purpose initial condition response of state-space model
\begin{tabular}{ll} 
Syntax & initial \\
& initial \((s y s, x 0)\) \\
& initial \((s y s, x 0, t)\)
\end{tabular}

Description
initial calculates the unforced response of a state-space model with an initial condition on the states.
\[
\begin{aligned}
& \dot{x}=A x, \quad x(0)=x_{0} \\
& y=C x
\end{aligned}
\]

This function is applicable to either continuous- or discrete-time models. When invoked without left-side arguments, initial plots the initial condition response on the screen.
initial(sys, x 0 ) plots the response of sys to an initial condition x 0 on the states. sys can be any state-space model (continuous or discrete, SISO or MIMO, with or without inputs). The duration of simulation is determined automatically to reflect adequately the response transients.
initial(sys, \(x 0, t\) ) explicitly sets the simulation horizon. You can specify either a final time \(t=\) Tfinal (in seconds), or a vector of evenly spaced time samples of the form
\[
\mathrm{t}=0: \mathrm{dt}: \text { Tfinal }
\]

For discrete systems, the spacing dt should match the sample period. For continuous systems, dt becomes the sample time of the discretized simulation model (see impulse), so make sure to choose dt small enough to capture transient phenomena.

To plot the initial condition responses of several LTI models on a single figure, use
```

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)

```
(see impulse for details).
When invoked with left-side arguments,
\[
\begin{aligned}
& {[y, t, x]=\text { initial }(\text { sys }, x 0)} \\
& {[y, t, x]=\operatorname{initial}(\text { sys }, x 0, t)}
\end{aligned}
\]
return the output response \(y\), the time vector \(t\) used for simulation, and the state trajectories \(x\). No plot is drawn on the screen. The array \(y\) has as many rows as time samples (length of \(t\) ) and as many columns as outputs. Similarly, \(x\) has length( \(t\) ) rows and as many columns as states.

\section*{Example}

Plot the response of the state-space model
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
& y=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
\]
to the initial condition
\[
\begin{aligned}
& x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& a=\left[\begin{array}{lll}
-0.5572 & -0.7814 ; 0.7814 & 0
\end{array}\right] ; \\
& c=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right] ; \\
& x 0=\left[\begin{array}{ll}
1 & ;
\end{array}\right] \\
& \text { sys }=\operatorname{ss}(a,[], c,[]) ; \\
& \text { initial }(\text { sys }, x 0)
\end{aligned}
\]

\section*{initial}


See Also
impulse, lsim, ltiview, step

Purpose
Plot initial condition response and return plot handle

\section*{Syntax}
```

initialplot(sys,x0)
initialplot(sys,x0,Tfinal)
initialplot(sys,x0,t)
initialplot(sys1,sys2,...,x0,t)
initialplot(AX,...)
initialplot(..., plotoptions)

```

\section*{Description}
initialplot (sys, \(x 0\) ) plots the undriven response of the state-space
model sys (created with ss) with initial condition \(x 0\) on the states. This response is characterized by these equations:

Continuous time: \(\mathrm{x}=\mathrm{Ax} \mathrm{x}, \mathrm{y}=\mathrm{Cx}, \mathrm{x}(0)=\mathrm{x} 0\)
Discrete time: \(\mathrm{x}[\mathrm{k}+1]=\mathrm{Ax}[\mathrm{k}], \mathrm{y}[\mathrm{k}]=\mathrm{Cx}[\mathrm{k}], \mathrm{x}[0]=\mathrm{x} 0\)
The time range and number of points are chosen automatically. initialplot also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
initialplot(sys, x0,Tfinal) simulates the time response from \(t=0\) to the final time \(t=T f i n a l\). For discrete-time models with unspecified sample time, Tfinal should be the number of samples.
initialplot (sys, \(x 0, t\) ) specifies a time vector \(t\) to be used for simulation. For discrete systems, \(t\) should be of the form \(0: T s: T f\), where Ts is the sample time. For continuous-time models, \(t\) should be of the form \(0: d t: T f\), where \(d t\) becomes the sample time of a discrete approximation of the continuous model.
initialplot(sys1, sys2, .., x0, t) plots the response of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The time vector t is optional. You can also specify a color, line style, and marker for each system, as in

\section*{initialplot}
```

initialplot(sys1,'r',sys2,'y--',sys3,'gx',x0).

```
initialplot (AX, ...) plots into the axes with handle AX.
initialplot(..., plotoptions) plots the initial condition response with the options specified in plotoptions. Type
```

help timeoptions

```
for more detail.

\section*{Example}

Plot a third-order system's response to initial conditions and use the plot handle to change the plot's title.
```

sys = rss(3);
h = initialplot(sys,[1,1,1])
p = getoptions(h); % Get options for plot.
p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to the plot.

```

\section*{See Also}
getoptions, initial, setoptions
\begin{tabular}{ll} 
Purpose & Interpolate FRD model \\
Syntax & isys = interp(sys, freqs) \\
Description & \begin{tabular}{l} 
isys = interp(sys, freqs) interpolates the frequency response data \\
contained in the FRD model sys at the frequencies freqs. interp, \\
which is an overloaded version of the MATLAB function interp, uses
\end{tabular} \\
linear interpolation and returns an FRD model isys containing the \\
interpolated data at the new frequencies freqs. \\
You should express the frequency values freqs in the same units as \\
sys.frequency. The frequency values must lie between the smallest \\
and largest frequency points in sys (extrapolation is not supported).
\end{tabular}

\author{
See Also \\ freqresp, ltimodels
}

Purpose Invert LTI systems

\section*{Syntax inv}

Description inv inverts the input/output relation
\[
y=G(s) u
\]
to produce the LTI system with the transfer matrix \(H(s)=G(s)^{-1}\).
\[
u=H(s) y
\]

This operation is defined only for square systems (same number of inputs and outputs) with an invertible feedthrough matrix \(D\). inv handles both continuous- and discrete-time systems.

\section*{Example}

Consider
\[
H(s)=\left[\begin{array}{cc}
1 & \frac{1}{s+1} \\
0 & 1
\end{array}\right]
\]

At the MATLAB prompt, type
```

H = [1 tf(1,[1 1]);0 1]
Hi = inv(H)

```
to invert it. MATLAB returns
Transfer function from input 1 to output...
\#1: 1
\#2: 0
Transfer function from input 2 to output...
-1
\#1: -----
```

 s + 1
 #2: 1
    ```

You can verify that
```

H * Hi

```
is the identity transfer function (static gain I).
Limitations Do not use inv to model feedback connections such as


While it seems reasonable to evaluate the corresponding closed-loop transfer function \((I+G H)^{-1} G\) as
```

inv(1+g*h) * g

```
this typically leads to nonminimal closed-loop models. For example,
```

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

```
yields a third-order closed-loop model with an unstable pole-zero cancellation at \(s=1\).
cloop
Zero/pole/gain:
\(s(s-1)\)
\((s-1)\left(s^{\wedge} 2+s+1\right)\)
Use feedback to avoid such pitfalls.
cloop \(=\) feedback ( \(\mathrm{g}, \mathrm{h}\) )
Zero/pole/gain:
s
\(\left(s^{\wedge} 2+s+1\right)\)

\section*{Purpose}

Plot pole-zero map for I/O pairs of LTI model

\section*{Syntax}
iopzmap(sys)
iopzmap(sys1,sys2,...)
iopzmap(sys) computes and plots the poles and zeros of each input/output pair of the LTI model sys. The poles are plotted as x's and the zeros are plotted as o's.
iopzmap (sys1,sys2,...) shows the poles and zeros of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. You can specify distinctive colors for each model, as in iopzmap(sys1, 'r', sys2, 'y', sys3, 'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the \(s\) or \(z\) plane.

For arrays sys of LTI models, iopzmap plots the poles and zeros o each model in the array on the same diagram.

Example Create a one-input, two-output system and plot pole-zero maps for I/O pairs.
```

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];
iopzmap(H)

```

\section*{iopzmap}


See Also pzmap, pole, zero, sgrid, zgrid, ltimodels

\section*{Purpose}

Plot pole-zero map for I/O pairs and return plot handle
Syntax
```

h = iopzplot(sys)
iopzplot(sys1,sys2,...)
iopzplot(AX,...)
iopzplot(..., plotoptions)

```

Description
h = iopzplot(sys) computes and plots the poles and zeros of each input/output pair of the LTI model SYS. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help pzoptions

```
for a list of available plot options.
iopzplot (sys1, sys2, ...) shows the poles and zeros of multiple LTI models SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model, as in
```

iopzplot(sys1,'r',sys2,'y',sys3,'g')

```
iopzplot (AX,...) plots into the axes with handle AX.
iopzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
```

help pzoptions

```
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzplot plots the poles and zeros of each model in the array on the same diagram.
```

Example Use the plot handle to change the I/O grouping of a pole/zero map.
sys $=r s s(3,2,2)$;
h = iopzplot(sys);
\% View all input-output pairs on a single axis.
setoptions(h,'IOGrouping','all')

```

See Also
getoptions, iopzmap, setoptions

\section*{Purpose}

Determine whether LTI model is continuous or discrete
Syntax
boo = isct(sys)
boo = isdt(sys)
Description
(10))
isdt(tf(10))
are true. However, if you explicitly label a gain as discrete, for example, by typing
\[
g=t f(10, ' t s ', 0.01)
\]
isct ( g ) now returns false and only isdt ( g ) is true.
See Also
isa, isempty, isproper

\section*{isempty}

Purpose Determine whether LTI model is empty

\section*{Syntax isempty(sys)}

Description isempty(sys) returns 1 (true) if the LTI model sys has no input or no output, and 0 (false) otherwise.

\section*{Example Both commands}
```

 isempty(tf) % tf by itself returns an empty transfer function
 isempty(ss(1,2,[],[]))
    ```
return 1 (true) while
isempty(ss(1, 2, 3, 4))
returns 0 (false).
See Also issiso, size

\section*{Purpose Determine whether LTI model is proper}

\section*{Syntax isproper(sys)}

Description isproper(sys) returns 1 (true) if the LTI model sys is proper and 0 (false) otherwise.

State-space models are always proper. SISO transfer functions or zero-pole-gain models are proper if the degree of their numerator is less than or equal to the degree of their denominator. MIMO transfer functions are proper if all their SISO entries are proper.

\section*{Example}

The following commands
```

isproper(tf([1 0],1)) % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

```
return false and true, respectively.

\section*{Iti/isstable}

Purpose Determine whether system is stable

\section*{Syntax isstable(sys)}

Description isstable(sys) returns TRUE if the LTI model sys has stable dynamics, and FALSE otherwise. For LTI arrays, isstable returns a logical array where the \(k\)-th entry indicates the stability of the \(k\)-th model.
isstable is only supported for analytical models with a finite number of poles.

See Also ltimodels

Purpose Determine whether LTI model is single-input/single-output (SISO)

\section*{Syntax issiso(sys)}

Description issiso(sys) returns 1 (true) if the LTI model sys is SISO and 0 (false) otherwise.

See Also isempty, size

Purpose Design continuous- or discrete-time Kalman estimator

\section*{Syntax kalman}

Description kalman designs a Kalman state estimator given a state-space model of the plant and the process and measurement noise covariance data. The Kalman estimator is the optimal solution to the following continuous or discrete estimation problems.

\section*{Continuous-Time Estimation}

Given the continuous plant
\[
\begin{array}{ll}
\dot{x}=A x+B u+G w & \text { (state equation) } \\
y_{v}=C x+D u+H w+v & \text { (measurement equation) }
\end{array}
\]
with known inputs \(u\) and process and measurement white noise \(w, v\) satisfying
\[
E(w)=E(v)=0, \quad E\left(w w^{T}\right)=Q, \quad E\left(v v^{T}\right)=R, \quad E\left(w v^{T}\right)=N
\]
construct a state estimate \(\hat{x}(t)\) that minimizes the steady-state error covariance
\[
P=\lim _{t \rightarrow \infty} E\left(\{x-\hat{x}\}\{x-\hat{x}\}^{T}\right)
\]

The optimal solution is the Kalman filter with equations
\[
\begin{aligned}
& \dot{\hat{x}}=A \hat{x}+B u+L\left(y_{v}-C \hat{x}-D u\right) \\
& {\left[\begin{array}{l}
\hat{y} \\
\hat{x}
\end{array}\right]=\left[\begin{array}{c}
C \\
I
\end{array}\right] \hat{x}+\left[\begin{array}{c}
D \\
0
\end{array}\right] u}
\end{aligned}
\]
where the filter gain \(L\) is determined by solving an algebraic Riccati equation. This estimator uses the known inputs \(u\) and the measurements \(y_{v}\) to generate the output and state estimates \(\hat{y}\) and \(\hat{x}\). Note that \(\hat{y}\) estimates the true plant output
\[
y=C x+D u+H w
\]


Kalman estimator

\section*{Discrete-Time Estimation}

Given the discrete plant
\[
\begin{aligned}
x[n+1] & =A x[n]+B u[n]+G w[n] \\
y_{v}[n] & =C x[n]+D u[n]+H w[n]+v[n]
\end{aligned}
\]
and the noise covariance data
\[
E\left(w[n] w[n]^{T}\right)=Q, \quad E\left(v[n] v[n]^{T}\right)=R, \quad E\left(w[n] v[n]^{T}\right)=N
\]
the Kalman estimator has equations
\[
\begin{aligned}
\hat{x}[n+1 \mid n] & =A \hat{x}[n \mid n-1]+B u[n]+L\left(y_{v}[n]-C \hat{x}[n \mid n-1]-D u[n]\right) \\
{\left[\begin{array}{c}
\hat{y}[n \mid n] \\
\hat{x}[n \mid n]
\end{array}\right] } & =\left[\begin{array}{c}
C(I-M C) \\
I-M C
\end{array}\right] \hat{x}[n \mid n-1]+\left[\begin{array}{cc}
(I-C M) D & C M \\
-M D & M
\end{array}\right]\left[\begin{array}{c}
u[n] \\
y_{v}[n]
\end{array}\right]
\end{aligned}
\]
and generates optimal "current" output and state estimates \(\hat{y}[n \mid n]\) and \(\hat{x}[n \mid n]\) using all available measurements including \(y_{\nu}[n]\). The gain matrices \(L\) and \(M\) are derived by solving a discrete Riccati equation.

The innovation gain \(M\) is used to update the prediction \(\hat{x}[n \mid n-1]\) using the new measurement \(y_{v}[n]\).
\[
\hat{x}[n \mid n]=\hat{x}[n \mid n-1]+M(\underbrace{y_{v}[n]-C \hat{x}[n \mid n-1]-D u[n]}_{\text {innovation }})
\]

\section*{Usage}
[kest, L, P] = kalman(sys, Qn, Rn, Nn) returns a state-space model kest of the Kalman estimator given the plant model sys and the noise covariance data Qn, Rn, Nn (matrices \(Q, R, N\) above). sys must be a state-space model with matrices

\section*{\(A,[B G], C,\left[\begin{array}{ll}D & H\end{array}\right]\)}

The resulting estimator kest has \(\left[u ; y_{v}\right]\) as inputs and \([\hat{y} ; \hat{x}]\) (or their discrete-time counterparts) as outputs. You can omit the last input argument Nn when \(N=0\).
The function kalman handles both continuous and discrete problems and produces a continuous estimator when sys is continuous, and a discrete estimator otherwise. In continuous time, kalman also returns the Kalman gain L and the steady-state error covariance matrix P. Note that \(P\) is the solution of the associated Riccati equation. In discrete time, the syntax
\[
\text { [kest, } L, P, M, Z]=\text { kalman(sys, } Q n, R n, N n)
\]
returns the filter gain \(L\) and innovations gain \(M\), as well as the steady-state error covariances
\[
\begin{array}{crl}
P=\lim _{n \rightarrow \infty} E\left(e[n \mid n-1] e[n \mid n-1]^{T}\right), & e[n \mid n-1] & =x[n]-x[n \mid n-1] \\
Z=\lim _{n \rightarrow \infty} E\left(e[n \mid n] e[n \mid n]^{T}\right), & e[n \mid n]=x[n]-x[n \mid n]
\end{array}
\]

Finally, use the syntaxes
```

[kest,L,P] = kalman(sys,Qn,Rn,Nn, sensors,known)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn, sensors,known)

```
for more general plants sys where the known inputs \(u\) and stochastic inputs \(w\) are mixed together, and not all outputs are measured. The index vectors sensors and known then specify which outputs \(y\) of sys are measured and which inputs uare known. All other inputs are assumed stochastic.

\section*{Example}

\section*{Limitations}

\section*{References}

See Also

See LQG Design for the x -Axis and Kalman Filtering for examples that use the kalman function.

The plant and noise data must satisfy:
- \((\boldsymbol{C}, \boldsymbol{A})\) detectable
- \(\bar{R}>0\) and \(\bar{Q}-\bar{N} \bar{R}^{1} \bar{N}^{T} \geq 0\)
- \(A-\bar{N} \bar{R}^{-1} C, \bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T}\) ) has no uncontrollable mode on the imaginary axis (or unit circle in discrete time)
with the notation
\[
\begin{aligned}
& \bar{Q}=G Q G^{T} \\
& \bar{R}=R+H N+N^{T} H^{T}+H Q H^{T} \\
& \bar{N}=G\left(Q H^{T}+N\right)
\end{aligned}
\]
[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990.

\section*{Purpose Design discrete Kalman estimator for continuous plant}

\section*{Syntax}
kalmd
[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

\section*{Description}
kalmd designs a discrete-time Kalman estimator that has response characteristics similar to a continuous-time estimator designed with kalman. This command is useful to derive a discrete estimator for digital implementation after a satisfactory continuous estimator has been designed.
[kest, L, P, M, Z] = kalmd(sys, Qn, Rn, Ts) produces a discrete Kalman estimator kest with sample time Ts for the continuous-time plant
\[
\begin{array}{ll}
\dot{x}=A x+B u+G w & \text { (state equation) } \\
y_{v}=C x+D u+v & \text { (measurement equation) }
\end{array}
\]
with process noise \(w\) and measurement noise \(v\) satisfying
\[
E(w)=E(v)=0, \quad E\left(w w^{T}\right)=Q_{n}, \quad E\left(v v^{T}\right)=R_{n}, \quad E\left(w v^{T}\right)=0
\]

The estimator kest is derived as follows. The continuous plant sys is first discretized using zero-order hold with sample time Ts (see c2d entry), and the continuous noise covariance matrices \(Q_{n}\) and \(R_{n}\) are replaced by their discrete equivalents
\[
\begin{aligned}
& Q_{d}=\int_{0}^{T_{s}} e^{A \tau} G Q G^{T} e^{A^{T} \tau} d \tau \\
& R_{d}=R / T_{s}
\end{aligned}
\]

The integral is computed using the matrix exponential formulas in [2]. A discrete-time estimator is then designed for the discretized plant and noise. See kalman for details on discrete-time Kalman estimation.
kalmd also returns the estimator gains \(L\) and \(M\), and the discrete error covariance matrices P and \(Z\) (see kalman for details).

\section*{Limitations The discretized problem data should satisfy the requirements for kalman.}

\author{
References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990. \\ [2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Automatic Control, AC-15, October 1970.
}

See Also
kalman, lqgreg, lqrd

\section*{Purpose}

\section*{Syntax}
lft
sys \(=\operatorname{lft}(s y s 1\), sys2, nu, ny)

\section*{Description}

Generalized feedback interconnection of two LTI models (Redheffer star product)
lft forms the star product or linear fractional transformation (LFT) of two LTI models or LTI arrays. Such interconnections are widely used in robust control techniques.
sys = lft(sys1,sys2, nu, ny) forms the star product sys of the two LTI models (or LTI arrays) sys1 and sys2. The star product amounts to the following feedback connection for single LTI models (or for each model in an LTI array).


This feedback loop connects the first nu outputs of sys2 to the last nu inputs of sys1 (signals \(u\) ), and the last ny outputs of sys1 to the first ny inputs of sys2 (signals \(y\) ). The resulting system sys maps the input vector \(\left[w_{1} ; w_{2}\right]\) to the output vector \(\left[z_{1} ; z_{2}\right]\).
The abbreviated syntax
```

sys = lft(sys1,sys2)

```
produces:
- The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than sys1. This amounts to deleting \(w_{2}\) and \(z_{2}\) in the above diagram.
- The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than sys2. This amounts to deleting \(w_{1 \text { and }} z_{1}\) in the above diagram.


Lower LFT connection
Upper LFT connection
\begin{tabular}{ll} 
Algorithm & \begin{tabular}{l} 
The closed-loop model is derived by elementary state-space \\
manipulations.
\end{tabular} \\
Limitations & There should be no algebraic loop in the feedback connection. \\
See Also & connect, feedback
\end{tabular}

\section*{Purpose Continuous linear-quadratic-Gaussian (LQG) control synthesis}

\section*{Syntax reg = lqg(sys, QXU, QWV)}

Description reg = lqg(sys, QXU, QWV) computes an optimal LQG regulator reg given a state-space model SYS of the plant and some weighting matrices QXU and QWV. The dynamic regulator \(u=\) REG * \(y\) generates the control signal u from the noisy measurements \(y\). Use positive feedback to connect this regulator to the plant.

The LQG regulator minimizes the cost function
\[
J=\lim _{T \rightarrow \infty} \int_{0}^{T}\left[x^{\prime}, u^{\prime}\right] Q X U\left[\begin{array}{l}
x \\
u
\end{array}\right] d t
\]
subject to the plant equations
\[
\begin{aligned}
\mathrm{dx} / \mathrm{dt} & =A x+B u+w \\
y & =C x+D u+v
\end{aligned}
\]
where the process noise w and measurement noise v are Gaussian white noises with covariance:
\[
E\left([w ; v] *\left[w ', v^{\prime}\right]\right)=\text { QWV }
\]
lqg can be used for both continuous- and discrete-time plants and uses the commands lqr and kalman to compute the LQG regulator.

\author{
See Also \\ lqr, kalman, lqry, ss, care, dare
}

\section*{Purpose}

Form LQG regulator given state-feedback gain and Kalman estimator

\section*{Syntax}
lqgreg
rlqg = lqgreg(kest,k,controls)
lqgreg forms the linear-quadratic-Gaussian (LQG) regulator by connecting the Kalman estimator designed with kalman and the optimal state-feedback gain designed with lqr, dlqr, or lqry. The LQG regulator minimizes some quadratic cost function that trades off regulation performance and control effort. This regulator is dynamic and relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands
\[
u=-K \hat{x}
\]
where \(\hat{X}\) is the Kalman state estimate. The regulator state-space equations are
\[
\begin{aligned}
\dot{\hat{x}} & =[A-L C-(B-L D) K] \hat{x}+L y_{v} \\
u & =-K \hat{x}
\end{aligned}
\]
where \(y_{v}\) is the vector of plant output measurements (see kalman for background and notation). The diagram below shows this dynamic regulator in relation to the plant.


In discrete time, you can form the LQG regulator using either the prediction \(\hat{x}[n \mid n-1]\) of \(x[n]\) based on measurements up to \(y_{v}[n-1]\), or the current state estimate \(\hat{x}[n \mid n]\) based on all available measurements including \(y_{v}[n]\). While the regulator
\[
u[n]=-K \hat{x}[n \mid n-1]
\]
is always well-defined, the current regulator
\[
u[n]=-K \hat{x}[n \mid n]
\]
is causal only when \(I-K M D\) is invertible (see kalman for the notation). In addition, practical implementations of the current regulator should allow for the processing time required to compute \(u[n]\) once the measurements \(y_{v}[n]\) become available (this amounts to a time delay in the feedback loop).

Usage
rlqg = lqgreg(kest,k) returns the LQG regulator rlqg (a state-space model) given the Kalman estimator kest and the state-feedback gain matrix k . The same function handles both continuous- and discrete-time cases. Use consistent tools to design kest and k :
- Continuous regulator for continuous plant: use lqr or lqry and kalman.
- Discrete regulator for discrete plant: use dlqr or lqry and kalman.
- Discrete regulator for continuous plant: use lqrd and kalmd.

In discrete time, lqgreg produces the regulator \(u[n]=-K \hat{x}[n \mid n-1]\)
by default (see "Description"). To form the "current" LQG regulator \(u[n]=-K \hat{x}[n \mid n]\) instead, use the syntax
```

rlqg = lqgreg(kest,k,'current')

```

This syntax is meaningful only for discrete-time problems.
rlqg = lqgreg(kest, k , controls) handles estimators that have access to additional known plant inputs \(u_{d}\). The index vector controls then specifies which estimator inputs are the controls \(u\), and the resulting LQG regulator rlqg has \(u_{d}\) and \(y_{v}\) as inputs (see figure below).

Note Always use positive feedback to connect the LQG regulator to the plant.


\section*{Example See the example LQG Regulation.}

\author{
See Also \\ kalman, kalmd, lqr, dlqr, lqrd, lqry, reg
}

\section*{Purpose}

Linear-quadratic (LQ) state-feedback regulator for state-space system
\[
\begin{aligned}
& {[K, S, e]=\operatorname{lqr}(S Y S, Q, R, N)} \\
& {[K, S, e]=\operatorname{LQR}(A, B, Q, R, N)}
\end{aligned}
\]

\section*{Description}

Limitations
\([K, S, e]=\operatorname{lqr}(S Y S, Q, R, N)\) calculates the optimal gain matrix \(K\) such that:

For a continuous time system, the state-feedback law \(u=-K x\) minimizes the quadratic cost function
\[
J(u)=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u+2 x^{T} N u\right) d t
\]
subject to the system dynamics \(\dot{x}=A x+B u\).
In addition to the state-feedback gain \(K\), lqr returns the solution \(S\) of the associated Riccati equation
\[
A^{T} S+S A-(S B+N) R^{-1}\left(B^{T} S+N^{T}\right)+Q=0
\]
and the closed-loop eigenvalues \(\mathrm{e}=\mathrm{eig}(\mathrm{A}-\mathrm{B} * \mathrm{~K})\). Note that \(K\) is derived from \(S\) by
\[
K=R^{-1}\left(B^{T} S+N^{T}\right)
\]

For a discrete-time state-space model, \(u[n]=-K x[n]\) minimizes
\[
J=\sum\left\{x^{\prime} Q x+u^{\prime} R u+2 x^{\prime} N u\right\}
\]
subject to \(x[n+1]=A x[n]+B u[n]\).
\([K, S, e]=\operatorname{LQR}(A, B, Q, R, N)\) is an equivalent syntax for continuous-time models with dynamics \(\mathrm{dx} / \mathrm{dt}=\mathrm{Ax}+\mathrm{Bu}\).
In all cases, the default value \(N=0\) is assumed when \(N\) is omitted.
The problem data must satisfy:
- The pair \((A, B)\) is stabilizable.
- \(R>0\) and \(Q-N R^{-1} N^{T} \geq 0\).
- \(Q-N R^{-1} N^{T}, A-B R^{-1} N^{T}\), has no unobservable mode on the imaginary axis.

See Also
care, dlqr, lqgreg, lqrd, lqry

\section*{Purpose}

Design discrete linear-quadratic (LQ) regulator for continuous plant

\section*{Syntax}
lqrd
[Kd,S,e] = lqrd(A,B,Q,R,Ts)
[Kd,S,e] = lqrd(A,B,Q,R,N,Ts)

\section*{Description}
lqrd designs a discrete full-state-feedback regulator that has response characteristics similar to a continuous state-feedback regulator designed using lqr. This command is useful to design a gain matrix for digital implementation after a satisfactory continuous state-feedback gain has been designed.
[Kd,S,e] = lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law
\[
u[n]=-K_{d} x[n]
\]
that minimizes a discrete cost function equivalent to the continuous cost function
\[
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u\right) d t
\]

The matrices A and B specify the continuous plant dynamics
\[
\dot{x}=A x+B u
\]
and Ts specifies the sample time of the discrete regulator. Also returned are the solution \(S\) of the discrete Riccati equation for the discretized problem and the discrete closed-loop eigenvalues e = eig(Ad-Bd*Kd).
\([K d, S, e]=\operatorname{lqrd}(A, B, Q, R, N, T s)\) solves the more general problem with a cross-coupling term in the cost function.
\[
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u+2 x^{T} N u\right) d t
\]

\section*{Algorithm}

\section*{Limitations}

References

The equivalent discrete gain matrix Kd is determined by discretizing the continuous plant and weighting matrices using the sample time Ts and the zero-order hold approximation.
With the notation
\[
\begin{array}{ll}
\Phi(\tau)=e^{A \tau}, & A_{d}=\Phi\left(T_{s}\right) \\
\Gamma(\tau)=\int_{0}^{\tau} e^{A \eta} B d \eta, & B_{d}=\Gamma\left(T_{s}\right)
\end{array}
\]
the discretized plant has equations
\[
x[n+1]=A_{d} x[n]+B_{d} u[n]
\]
and the weighting matrices for the equivalent discrete cost function are
\[
\left[\begin{array}{cc}
Q_{d} & N_{d} \\
N_{d}^{T} & R_{d}
\end{array}\right]=\int_{0}^{T,}\left[\begin{array}{cc}
\Phi^{T}(\tau) & 0 \\
\Gamma^{T}(\tau) & I
\end{array}\right]\left[\begin{array}{cc}
Q & N \\
N^{T} & R
\end{array}\right]\left[\begin{array}{cc}
\Phi(\tau) & \Gamma(\tau) \\
0 & I
\end{array}\right] d \tau
\]

The integrals are computed using matrix exponential formulas due to Van Loan (see [2]). The plant is discretized using c2d and the gain matrix is computed from the discretized data using dlqr.

The discretized problem data should meet the requirements for dlqr.
[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1980, pp. 439-440.
[2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Automatic Control, AC-15, October 1970.

See Also
c2d, dlqr, kalmd, lqr

\section*{Purpose}

\section*{Syntax}

\section*{Description}

Example
Limitations
See Also

Form linear-quadratic (LQ) state-feedback regulator with output weighting
\[
[K, S, e]=\text { lqry (sys, } Q, R, N)
\]

Given the plant
\[
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
\]
or its discrete-time counterpart, lqry designs a state-feedback control
\[
u=-K x
\]
that minimizes the quadratic cost function with output weighting
\[
J(u)=\int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u+2 y^{T} N u\right) d t
\]
(or its discrete-time counterpart). The function lqry is equivalent to lqr or dlqr with weighting matrices:
\[
\left[\begin{array}{cc}
\bar{Q} & \bar{N} \\
\bar{N}^{T} & \bar{R}
\end{array}\right]=\left[\begin{array}{cc}
C^{T} & 0 \\
D^{T} & I
\end{array}\right]\left[\begin{array}{cc}
Q & N \\
N^{T} & R
\end{array}\right]\left[\begin{array}{ll}
C & D \\
0 & I
\end{array}\right]
\]
\([K, S, e]=\) lqry (sys, \(Q, R, N\) ) returns the optimal gain matrix \(K\), the Riccati solution S, and the closed-loop eigenvalues \(e=e i g(A-B * K)\). The state-space model sys specifies the continuous- or discrete-time plant \(\operatorname{data}(A, B, C, D)\). The default value \(\mathrm{N}=0\) is assumed when N is omitted.

See LQG Design for the x -Axis for an example.
The data \(A, B, \bar{Q}, \bar{R}, \bar{N}\) must satisfy the requirements for lqr or dlqr.
lqr, dlqr, kalman, lqgreg

Simulate LTI model responses to arbitrary inputs
```

lsim
lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')
lsim(sys)

```
lsim simulates the (time) response of continuous or discrete linear systems to arbitrary inputs. When invoked without left-hand arguments, lsim plots the response on the screen.
lsim(sys, \(u, t\) ) produces a plot of the time response of the LTI model sys to the input time history \(t, u\). The vector \(t\) specifies the time samples for the simulation and consists of regularly spaced time samples.
\[
\mathrm{t}=0: \mathrm{dt}: \text { Tfinal }
\]

The matrix \(u\) must have as many rows as time samples (length ( \(t\) )) and as many columns as system inputs. Each row u(i,:) specifies the input value(s) at the time sample \(\mathrm{t}(\mathrm{i})\).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete time, u must be sampled at the same rate as the system ( t is then redundant and can be omitted or set to the empty matrix). In continuous time, the time sampling \(d t=t(2)-t(1)\) is used to discretize the continuous model. If \(d t\) is too large (undersampling), lsim issues a warning suggesting that you use a more appropriate sample time, but will use the specified sample time. See "Algorithm" on page 2-169 for a discussion of sample times.
\(\operatorname{lsim}(s y s, u, t, x 0)\) further specifies an initial condition \(x 0\) for the system states. This syntax applies only to state-space models.
lsim(sys, \(u, t, x 0, ' z o h ')\) or lsim(sys, \(u, t, x 0, ' f o h ')\) explicitly specifies how the input values should be interpolated between samples (zero-order hold or linear interpolation). By default, lsim selects the
interpolation method automatically based on the smoothness of the signal U.
Finally,
\[
\operatorname{lsim}(\text { sys } 1, \operatorname{sys} 2, \ldots, \operatorname{sysN}, u, t)
\]
simulates the responses of several LTI models to the same input history \(\mathrm{t}, \mathrm{u}\) and plots these responses on a single figure. As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,
```

lsim(sys1,'y:',sys2,'g--',u,t,x0)

```

The multisystem behavior is similar to that of bode or step.
When invoked with left-hand arguments,
```

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

```
return the output response \(y\), the time vector \(t\) used for simulation, and the state trajectories \(x\) (for state-space models only). No plot is drawn on the screen. The matrix y has as many rows as time samples (length(t)) and as many columns as system outputs. The same holds for x with "outputs" replaced by states. Note that the output \(t\) may differ from the specified time vector when the input data is undersampled (see "Algorithm" on page 2-169).
lsim(sys) opens the Linear Simulation Tool GUI. For more information about working with this GUI, see Working with the Linear Simulation Tool in the Control System Toolbox Getting Started guide.

Example Simulate and plot the response of the system
\[
H(s)=\left[\begin{array}{c}
\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
\frac{s-1}{s^{2}+s+5}
\end{array}\right]
\]
to a square wave with period of four seconds. First generate the square wave with gensig. Sample every 0.1 second during 10 seconds:
\[
[u, t]=\text { gensig('square' }, 4,10,0.1) ;
\]

Then simulate with lsim.
```

H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[$$
\begin{array}{lll}{1}&{1}&{5}\end{array}
$$])]
lsim(H,u,t)

```


\section*{Algorithm}

Discrete-time systems are simulated with ltitr (state space) or filter (transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or 'foh' method ('foh' is used for smooth input signals and 'zoh' for discontinuous signals such as pulses or square waves). The sampling period is set to the spacing dt between the user-supplied time samples t.

The choice of sampling period can drastically affect simulation results. To illustrate why, consider the second-order model
\[
H(s)=\frac{\omega^{2}}{s^{2}+2 s+\omega^{2}}, \quad \omega=62.83
\]

To simulate its response to a square wave with period 1 second, you can proceed as follows:
```

w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values
lsim(h,u,t)

```
lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or faster.

and produces this plot.
To improve on this response, discretize \(H(s)\) using the recommended sampling period:
```

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
lsim(hd,us,ts)

```



This response exhibits strong oscillatory behavior hidden from the undersampled version.

\section*{See Also}
gensig, impulse, initial, ltiview, step

\section*{Isiminfo}

\section*{Purpose Compute linear response characteristics}
```

Syntax $\quad S=1$ siminfo(y,t,yfinal)
S = lsiminfo(y,t)
S = lsiminfo(...,'SettlingTimeThreshold',ST)

```

Description

Example
\(S=1 \operatorname{siminfo}(y, t, y f i n a l)\) takes the response data ( \(t, y\) ) and a steady-state value yfinal and returns a structure \(S\) containing the following performance indicators:
- SettlingTime - Settling time
- Min - Minimum value of Y
- MinTime - Time at which the min value is reached
- Max - Maximum value of Y
- MaxTime - Time at which the max value is reached

For SISO responses, t and y are vectors with the same length NS. For responses with NY outputs, you can specify y as an NS-by-NY array and yfinal as a NY-by-1 array. lsiminfo then returns an NY-by-1 structure array \(S\) of performance metrics for each output channel.
\(S=\) lsiminfo \((y, t)\) uses the last sample value of \(y\) as steady-state value yfinal. \(s=1 s i m i n f o(y)\) assumes \(t=1: N S\).

S = lsiminfo(...,'SettlingTimeThreshold', ST) lets you specify the threshold ST used in the settling time calculation. The responsehas settled when the error \(\mid y(t)\) - yfinal| becomes smaller than a fraction ST of its peak value. The default value is \(\mathrm{ST}=0.02(2 \%)\).

Create a fourth order transfer function and ascertain the response characteristics.
```

sys = tf([1 -1],[1 2 3 4]);
[y,t] = impulse(sys);
s = lsiminfo(y,t,0) % final value is 0
s =

```
```

SettlingTime: 22.8626
Min: -0.4270
MinTime: 2.0309
Max: 0.2845
MaxTime: 4.0619

```

See Also
lsim, impulse, initial, stepinfo, ltimodels

\section*{Isimplot}

\section*{Purpose}

Syntax
```

h = lsimplot(sys)
lsimplot(sys1,sys2,...)
lsimplot(sys,u,t)
lsimplot(sys,u,t,x0)
lsimplot(sys1,sys2,···.,u,t,x0)
lsimplot(AX,...)
lsimplot(..., plotoptions)
lsimplot(sys,u,t,x0,'zoh')
lsimplot(sys,u,t,x0,'foh')

```

\section*{Description}
\(\mathrm{h}=\) lsimplot(sys) opens the Linear Simulation Tool for the LTI model sys (created with tf, zpk, or ss), which enables interactive specification of driving input(s), the time vector, and initial state. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
lsimplot(sys1,sys2,...) opens the Linear Simulation Tool for multiple LTI models sys1,sys2,.... Driving inputs are common to all specified systems but initial conditions can be specified separately for each.
lsimplot (sys, \(\mathrm{u}, \mathrm{t}\) ) plots the time response of the LTI model sys to the input signal described by \(u\) and \(t\). The time vector \(t\) consists of regularly spaced time samples. For MIMO systems, u is a matrix with as many columns as inputs and whose ith row specifies the input value at time t(i). For SISO systems u can be specified either as a row or column vector. For example,
```

t = 0:0.01:5;
u = sin(t);
lsimplot(sys,u,t)

```

\section*{Isimplot}
simulates the response of a single-input model sys to the input \(u(t)=s i n(t)\) during 5 seconds.
For discrete-time models, \(u\) should be sampled at the same rate as sys ( t is then redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period \(t(2)-t(1)\) small enough to accurately describe the input u. lsim issues a warning when \(u\) is undersampled, and hidden oscillations can occur.
lsimplot (sys, \(u, t, x 0\) ) specifies the initial state vector \(x 0\) at time \(t(1)\) (for state-space models only). \(x 0\) is set to zero when omitted.
lsimplot(sys1, sys2, ..., u,t,x0) simulates the responses of multiple LTI models sys 1 ,sys \(2, \ldots\) on a single plot. The initial condition \(\times 0\) is optional. You can also specify a color, line style, and marker for each system, as in
```

lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)

```
lsimplot (AX, ...) plots into the axes with handle AX.
lsimplot(..., plotoptions) plots the initial condition response with the options specified in plotoptions. Type
help timeoptions
for more detail.
For continuous-time models, lsimplot(sys,u,t,x0,'zoh') or lsimplot (sys, \(u, t, x 0\), 'foh') explicitly specifies how the input values should be interpolated between samples (zero-order hold or linear interpolation). By default, lsimplot selects the interpolation method automatically based on the smoothness of the signal \(u\).
getoptions, lsim, setoptions

\section*{Itimodels}
Purpose Help on LTI models
Syntax ltimodels
timodels(modeltype)
Description ltimodels displays general information on the various types of LTI models supported in the Control System Toolbox.ltimodels(modeltype) gives additional details and examples for eachtype of LTI model. The string modeltype selects the model type amongthe following:
- tf - Transfer functions (TF objects)
- zpk - Zero-pole-gain models (ZPK objects)
- ss - State-space models (SS objects)
- frd - Frequency response data models (FRD objects)
Note that you can type
ltimodels zpk
as a shorthand for
ltimodels('zpk')

\section*{See Also \\ frd, ltiprops, ss, tf, zpk}
Purpose Help on LTI model properties
Syntax ltiprops ltiprops(
Description ltiprops displays details on the generic properties of LTI models.ltiprops (modeltype) gives details on the properties specific to thevarious types of LTI models. The string modeltype selects the modeltype among the following:
- tf - transfer functions (TF objects)
- zpk - zero-pole-gain models (ZPK objects)
- ss - state-space models (SS objects)
- frd - frequency response data (FRD objects)
Note that you can type
ltiprops tf
as a shorthand for
ltiprops('tf')
See also
get, ltimodels, set

\section*{Itiview}

Purpose
LTI Viewer for LTI system response analysis

\section*{Syntax}
ltiview
ltiview('plottype',sys)
ltiview(plottype,sys,extras)
ltiview('clear', viewers)
ltiview('current',sys1,sys2,...,sysn, viewers)
ltiview(plottype, sys1,sys2,...sysN)
ltiview(plottype, sys1,
PlotStyle1, sys2, PlotStyle2, ...)
ltiview(plottype,sys1,sys2,
...sysN,extras)

\section*{Description}
ltiview when invoked without input arguments, initializes a new LTI Viewer for LTI system response analysis.
ltiview(sys1, sys2, ... sysn) opens an LTI Viewer containing the step response of the LTI models sys1, sys2, . . . sysn. You can specify a distinctive color, line style, and marker for each system, as in
```

sys1 = rss(3,2,2);
sys2 = rss(4,2,2);
ltiview(sys1,'r-*',sys2,'m--');

```
ltiview('plottype',sys) initializes an LTI Viewer containing the LTI response type indicated by plottype for the LTI model sys. The string plottype can be any one of the following:
```

'step'
'impulse'
'initial'
'lsim'
'pzmap'
'bode'
'nyquist'
'nichols'
'sigma'

```
or,
plottype can be a cell vector containing up to six of these plot types. For example,
```

ltiview({'step';'nyquist'},sys)

```
displays the plots of both of these response types for a given system sys.
ltiview(plottype,sys,extras) allows the additional input arguments supported by the various LTI model response functions to be passed to the ltiview command.
extras is one or more input arguments as specified by the function named in plottype. These arguments may be required or optional, depending on the type of LTI response. For example, if plottype is 'step' then extras may be the desired final time, Tfinal, as shown below.
```

ltiview('step',sys,Tfinal)

```

However, if plottype is 'initial', the extras arguments must contain the initial conditions x0 and may contain other arguments, such as Tfinal.
```

ltiview('initial',sys,x0,Tfinal)

```

See the individual references pages of each possible plottype commands for a list of appropriate arguments for extras.
ltiview('clear', viewers) clears the plots and data from the LTI Viewers with handles viewers.
ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the systems sys1, sys2, ... sysn to the LTI Viewers with handles viewers. If these new systems do not have the same I/O dimensions as those currently in the LTI Viewer, the LTI Viewer is first cleared and only the new responses are shown.
```

Finally,
ltiview(plottype, sys1, sys2,...sysN)
ltiview(plottype, sys1, PlotStyle1, sys2,PlotStyle2,...)
ltiview(plottype, sys1, sys2,...sysN, extras)

```
initializes an LTI Viewer containing the responses of multiple LTI models, using the plot styles in PlotStyle, when applicable. See the individual reference pages of the LTI response functions for more information on specifying plot styles.

\section*{See Also}
bode, impulse, initial, lsim, nichols, nyquist, pzmap, sigma, step

\section*{Purpose Solve continuous-time Lyapunov equation}

Syntax
lyap
X = lyap(A,Q)
\(X=\operatorname{lyap}(A, B, C)\)
X = lyap(A,Q,[],E)

Description
\[
A X+X B+C=0
\]

The matrices \(A, B\), and \(C\) must have compatible dimensions but need not be square.
\(X=\operatorname{lyap}(A, Q,[], E)\) solves the generalized Lyapunov equation
\[
A X E^{T}+E X A^{T}+Q=0
\]
where \(Q\) is a symmetric matrix. The empty square brackets, [ ], are mandatory. If you place any values inside them, the function will error out.

\section*{Algorithm}
lyap transforms the \(A\) and \(B\) matrices to complex Schur form, computes the solution of the resulting triangular system, and transforms this solution back[1].
lyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and SB04MD (SLICOT) and ZTRSYL (LAPACK) for Sylvester equations.

Limitations
The continuous Lyapunov equation has a (unique) solution if the eigenvalues \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\) of \(A\) and \(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\) of \(B\) satisfy
\[
\alpha_{i}+\beta_{j} \neq 0 \quad \text { for all pairs }(i, j)
\]

If this condition is violated, lyap produces the error message
Solution does not exist or is not unique.

\section*{References \\ [1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C," Comm. of the ACM, Vol. 15, No. 9, 1972. \\ [2] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975. pp. 328-338.}

See Also
covar, dlyap
\begin{tabular}{ll} 
Purpose & Square-root solver for continuous-time Lyapunov equation \\
Syntax & \(\left.\begin{array}{l}\text { R }\end{array}\right)=\operatorname{lyapchol}(A, B)\) \\
& \(X=\operatorname{lyapchol}(A, B, E)\)
\end{tabular}

Description \(\quad R=\operatorname{lyapchol}(A, B)\) computes a Cholesky factorization \(X=R^{\prime *} R\) of the solution \(X\) to the Lyapunov matrix equation:
```

A*X + X*A' + B**' = 0

```

All eigenvalues of matrix A must lie in the open left half-plane for \(R\) to exist.
\(X=\) lyapchol( \(A, B, E)\) computes a Cholesky factorization \(X=R^{1 *} R\) of \(X\) solving the generalized Lyapunov equation:
```

A*X*E' + E*X*A' + B**' = 0

```

All generalized eigenvalues of ( \(\mathrm{A}, \mathrm{E}\) ) must lie in the open left half-plane for R to exist.

\section*{Algorithm lyapchol uses SLICOT routines SB03OD and SG03BD. \\ See Also lyap, dlyapchol}

Purpose
Gain and phase margins and associated crossover frequencies

\section*{Syntax}
```

margin
[Gm,Pm,Wg,Wp] = margin(sys)
[Gm,Pm,Wg,Wp] = margin(mag,phase,w)

```

\section*{Description}
margin calculates the minimum gain margin, Gm , phase margin, Pm, and associated crossover frequencies of SISO open-loop models, Wg and Wp. The gain and phase margins indicate the relative stability of the control system when the loop is closed. When invoked without left-hand arguments, margin produces a Bode plot and displays the margins on this plot.

The gain margin is the amount of gain increase required to make the loop gain unity at the frequency where the phase angle is \(-180^{\circ}\). In other words, the gain margin is \(1 / g\) if \(g\) is the gain at the \(-180^{\circ}\) phase frequency. Similarly, the phase margin is the difference between the phase of the response and \(-180^{\circ}\) when the loop gain is 1.0 . The frequency at which the magnitude is 1.0 is called the unity-gain frequency or crossover frequency. It is generally found that gain margins of three or more combined with phase margins between 30 and 60 degrees result in reasonable trade-offs between bandwidth and stability.
[Gm,Pm,Wg,Wp] = margin(sys) computes the gain margin Gm, the phase margin Pm, and the corresponding crossover frequencies Wg and Wp, given the SISO open-loop model sys. Wg is the frequency where the gain is 0 dB , and Wp is the frequency where the phase is \(-180^{\circ}\). This function handles both continuous- and discrete-time cases. When faced with several crossover frequencies, margin returns the smallest gain and phase margins.

The phase margin Pm is in degrees. The gain margin Gm is an absolute magnitude. You can compute the gain margin in dB by
```

Gm_dB = 20*log10(Gm)

```
[Gm, Pm, Wg, Wp] = margin(mag, phase,w) derives the gain and phase margins from the Bode frequency response data (magnitude, phase, and
frequency vector). Interpolation is performed between the frequency points to estimate the margin values. This approach is generally less accurate.

When invoked without left-hand argument,
```

margin(sys)

```
plots the open-loop Bode response with the gain and phase margins marked by vertical lines. By default, gain margins are expressed in \(d B\) when plotting.

\section*{Example}

You can compute the gain and phase margins of the open-loop discrete-time transfer function. Type
```

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)

```

MATLAB responds with
```

Transfer function:

```
    0.04798 z + 0.0464
    z^2 - 1.81 z + 0.9048
    Sampling time: 0.1

Type
    [Gm, Pm,Wg,Wp] = margin(hd);
and MATLAB returns
```

ans =
2.0517 13.5711 5.4374 4.3544

```

You can also display these margins graphically.
```

margin(hd)

```


\section*{Algorithm}

See Also

The phase margin is computed using \(H_{\infty}\) theory, and the gain margin by solving \(H(j \omega)=\overline{H(j \omega)}\) for the frequency \(\omega\).

\section*{Purpose Minimal realization or pole-zero cancelation}

\section*{Syntax \\ Description}
sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)

Example
The commands
```

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

```
produce the nonminimal zero-pole-gain model by typing cloop.
Zero/pole/gain:
s (s-1)
\((s-1)\left(s^{\wedge} 2+s+1\right)\)
To cancel the pole-zero pair at \(s=1\), type
```

cloop = minreal(cloop)

```
and MATLAB returns

\section*{minreal}
```

Zero/pole/gain:
S
(s^2 + s + 1)

```

\section*{Algorithm}

See Also balreal, modred, sminreal

\section*{Purpose Model order reduction}
```

Syntax
modred
rsys = modred(sys,elim)
rsys = modred(sys,elim,'method')

```

\section*{Description}
modred reduces the order of a continuous or discrete state-space model sys by eliminating the states found in the vector elim. The full state vector X is partitioned as \(\mathrm{X}=[\mathrm{X} 1 ; \mathrm{X} 2]\) where X 2 is to be discarded, and the reduced state is set to \(\mathrm{Xr}=\mathrm{X} 1+\mathrm{T}^{*} \mathrm{X} 2\) where T is chosen to enforce matching DC gains (steady-state response) between sys and rsys.
elim can be a vector of indices or a logical vector commensurate with X where true values mark states to be discarded. This function is usually used in conjunction with balreal. Use balreal to first isolate states with negligible contribution to the I/O response. If sys has been balanced with balreal and the vector \(g\) of Hankel singular values has M small entries, you can use modred to eliminate the corresponding M states. For example:
```

[sys,g] = balreal(sys) \% Compute balanced realization
elim $=(\mathrm{g}<1 \mathrm{e}-8) \quad$ \% Small entries of g are negligible states
rsys $=$ modred(sys,elim)
\% Remove negligible states

```
rsys \(=\) modred(sys,elim,'method') also specifies the state elimination method. Choices for 'method ' include
- 'MatchDC': Enforce matching DC gains (default)
- 'Truncate': Simply delete X2 and sets Xr = X1.

The 'Truncate' option tends to produces a better approximation in the frequency domain, but the DC gains are not guaranteed to match.

If the state-space model sys has been balanced with balreal and the grammians have \(m\) small diagonal entries, you can reduce the model order by eliminating the last \(m\) states with modred.

\section*{Example Consider the continuous fourth-order model}
\[
h(s)=\frac{s^{3}+11 s^{2}+36 s+26}{s^{4}+14.6 s^{3}+74.96 s^{2}+153.7 s+99.65}
\]

To reduce its order, first compute a balanced state-space realization with balreal by typing
```

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)
g'

```

MATLAB returns
```

ans =
1.3938e-01 9.5482e-03 6.2712e-04 7.3245e-06

```

The last three diagonal entries of the balanced grammians are small, so eliminate the last three states with modred using both matched DC gain and direct deletion methods.
```

hmdc = modred(hb,2:4,'MatchDC')
hdel = modred(hb,2:4,'Truncate')

```

Both hmdc and hdel are first-order models. Compare their Bode responses against that of the original model \(h(s)\).
```

bode(h,'-',hmdc,'x',hdel,'*')

```


The reduced-order model hdel is clearly a better frequency-domain approximation of \(h(s)\). Now compare the step responses.
```

step(h,'-',hmdc,'-.',hdel,'--')

```


While hdel accurately reflects the transient behavior, only hmdc gives the true steady-state response.

\section*{Algorithm}

The algorithm for the matched DC gain method is as follows. For continuous-time models
\[
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
\]
the state vector is partitioned into \(x_{1}\), to be kept, and \(x_{2}\), to be eliminated.
\[
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] x+D u
\end{aligned}
\]

Next, the derivative of \(x_{2}\) is set to zero and the resulting equation is solved for \(x_{1}\). The reduced-order model is given by
\[
\begin{aligned}
\dot{c}_{1} & =\left[A_{11}-A_{12} A_{22}^{-1} A_{21}\right] x_{1}+\left[B_{1}-A_{12} A_{22}^{-1} B_{2}\right] u \\
y & =\left[C_{1}-C_{2} A_{22}^{-1} A_{21}\right] x+\left[D-C_{2} A_{22}^{-1} B_{2}\right] u
\end{aligned}
\]

The discrete-time case is treated similarly by setting
\[
x_{2}[n+1]=x_{2}[n]
\]

\section*{Limitations}

See Also

With the matched DC gain method, \(A_{22}\) must be invertible in continuous time, and \(I-A_{22}\) must be invertible in discrete time.

\section*{Purpose Region-based modal decomposition}

\section*{Syntax \(\quad[\mathrm{H}, \mathrm{HO}]=\operatorname{modsep}(\mathrm{G}, \mathrm{N}, \mathrm{REGIONFCN})\)}

MODSEP (G,N,REGIONFCN, PARAM1, ...)

\section*{Description}

Example
\([\mathrm{H}, \mathrm{HO}]=\operatorname{modsep}(\mathrm{G}, \mathrm{N}, \mathrm{REGIONFCN})\) decomposes the LTI model G into a sum of n simpler models Hj with their poles in disjoint regions Rj of the complex plane:
\[
G(s)=H 0+\sum_{j=1}^{N} H j(s)
\]

G can be any LTI model created with ss, tf, or zpk, and \(N\) is the number of regions used in the decomposition. modsep packs the submodels Hj into an LTI array H and returns the static gain HO separately. Use \(\mathrm{H}(:,:, j)\) to retrieve the submodel \(\mathrm{Hj}(\mathrm{s})\).

To specify the regions of interest, use a function of the form
\[
\text { IR }=\text { REGIONFCN(p) }
\]
that assigns a region index IR between 1 and \(N\) to a given pole \(p\). You can specify this function as a string or a function handle, and use the syntax MODSEP ( \(G, N\), REGIONFCN, PARAM1 , ...) to pass extra input arguments:
\[
\text { IR }=\text { REGIONFCN }(p, \text { PARAM1 }, \ldots)
\]

To decompose \(G\) into \(G(z)=H 0+H 1(z)+H 2(z)\) where \(H 1\) and H 2 have their poles inside and outside the unit disk respectively, use
\[
[\mathrm{H}, \mathrm{HO}]=\operatorname{modsep}(\mathrm{G}, 2, \text { @udsep })
\]
where the function udsep is defined by
```

function r = udsep(p)
if abs(p)<1, r=1; % assign r=1 to poles inside unit disk
else r = 2; % assign r=2 to poles outside unit disk
end

```

To extract \(\mathrm{H} 1(\mathrm{z})\) and \(\mathrm{H} 2(\mathrm{z})\) from the LTI array H , use \(H 1=H(:,:, 1) ; H 2=H(:,:, 2) ;\)

See Also stabsep

Purpose Provide number of dimensions of LTI model or LTI array

\section*{Syntax \\ n = ndims(sys)}

Description \(n=\) ndims(sys) is the number of dimensions of an LTI model or an array of LTI models sys. A single LTI model has two dimensions (one for outputs, and one for inputs). An LTI array has \(2+p\) dimensions, where \(p \geq 2\) is the number of array dimensions. For example, a 2-by-3-by- 4 array of models has \(2+3=5\) dimensions.
```

ndims(sys) = length(size(sys))

```

Example
sys \(=\operatorname{rss}(3,1,1,3)\);
ndims(sys)
ans =
4
ndims returns 4 for this 3-by-1 array of SISO models.
See Also size

\section*{Purpose Superimpose Nichols chart on Nichols plot}

\section*{Syntax ngrid}

Description ngrid superimposes Nichols chart grid lines over the Nichols frequency response of a SISO LTI system. The range of the Nichols grid lines is set to encompass the entire Nichols frequency response.
The chart relates the complex number \(H /(1+H)\) to \(H\), where \(H\) is any complex number. For SISO systems, when \(H\) is a point on the open-loop frequency response, then
\[
\frac{H}{1+H}
\]
is the corresponding value of the closed-loop frequency response assuming unit negative feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the region -40 dB to 40 dB in magnitude and -360 degrees to 0 degrees in phase. If the current axis does not contain a SISO Nichols frequency response, ngrid returns a warning.

\section*{Example}

Plot the Nichols response with Nichols grid lines for the system.
\[
H(s)=\frac{-4 s^{4}+48 s^{3}-18 s^{2}+250 s+600}{s^{4}+30 s^{3}+282 s^{2}+525 s+60}
\]

Type
\[
H=\operatorname{tf}\left(\left[\begin{array}{lllll}
-4 & 48 & -18 & 250 & 600
\end{array}\right],\left[\begin{array}{lllll}
1 & 30 & 282 & 525 & 60
\end{array}\right]\right)
\]

MATLAB returns
```

Transfer function:

- 4 s^4 + 48 s^3 - 18 s^2 + 250 s + 600
s^4 + 30 s^3 + 282 s^2 + 525 s + 60

```
Type
nichols(H)
ngrid



> nichols

See Also

\section*{Purpose Nichols plot of LTI models}

Syntax
```

nichols
nichols(sys)
nichols(sys,w)
nichols(sys1,sys2,...,sysN,w)
nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')
[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

```

\section*{Description}
nichols computes the frequency response of an LTI model and plots
it in the Nichols coordinates. Nichols plots are useful to analyze openand closed-loop properties of SISO systems, but offer little insight into MIMO control loops. Use ngrid to superimpose a Nichols chart on an existing SISO Nichols plot.
nichols(sys) produces a Nichols plot of the LTI model sys. This model can be continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces an array of Nichols plots, each plot showing the response of one particular I/O channel. The frequency range and gridding are determined automatically based on the system poles and zeros.
nichols(sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval [wmin, wmax], set w = \{wmin, wmax\}. To use particular frequency points, set \(w\) to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. Frequencies should be specified in radians/sec.
nichols(sys1,sys2,...,sysN) or nichols(sys1,sys2, ...,sysN,w) superimposes the Nichols plots of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous- and discrete-time systems. You can also specify a distinctive color, linestyle, and/or marker for each system plot with the syntax

\section*{nichols}
```

nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

```

See bode for an example.
When invoked with left-hand arguments,
[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)
return the magnitude and phase (in degrees) of the frequency response at the frequencies w (in \(\mathrm{rad} / \mathrm{sec}\) ). The outputs mag and phase are 3-D arrays similar to those produced by bode (see the bode reference page). They have dimensions
```

(number of outputs) }\times\mathrm{ (number of inputs) }\times\mathrm{ (length of w)

```

\section*{Example}

Plot the Nichols response of the system
\[
\begin{aligned}
& H(s)=\frac{-4 s^{4}+48 s^{3}-18 s^{2}+250 s+600}{s^{4}+30 s^{3}+282 s^{2}+525 s+60} \\
& \text { num }=\left[\begin{array}{ll}
-448-18250600] ; \\
\text { den }=[13028252560] ; \\
H=\operatorname{tf}(\text { num, den })
\end{array}\right. \\
& \text { nichols(H) ; ngrid }
\end{aligned}
\]


The right-click menu for Nichols plots includes the Tight option under Zoom. You can use this to clip unbounded branches of the Nichols plot.

\section*{Algorithm}

See bode.
See Also
bode, evalfr, freqresp, ltiview, ngrid, nyquist, sigma

\section*{nicholsplot}

Purpose
Plot Nichols frequency responses and return plot handle
Syntax
```

h = nicholsplot(sys)
nicholsplot(sys,{wmin,wmax})
nicholsplot(sys,w)
nicholsplot(sys1,sys2,...,w)
nicholsplot(AX,...)
nicholsplot(..., plotoptions)

```

\section*{Description}
\(\mathrm{h}=\) nicholsplot(sys) draws the nichols plot of the LTI model sys (created with tf, zpk, ss, or frd). It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help nicholsoptions

```
for a list of available plot options.
The frequency range and number of points are chosen automatically. See bode for details on the notion of frequency in discrete time.
nicholsplot (sys, \{wmin, wmax\}) draws the Nichols plot for frequencies between wmin and wmax (in rad/s).
nicholsplot (sys,w) uses the user-supplied vector w of frequencies, in radians/second, at which the Nichols response is to be evaluated. See logspace to generate logarithmically spaced frequency vectors.
nicholsplot (sys1, sys2, ...,w) draws the Nichols plots of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The frequency vector \(w\) is optional. You can also specify a color, line style, and marker for each system, as in
```

nicholsplot(sys1,'r',sys2,'y--',sys3,'gx').

```
nicholsplot (AX, ...) plots into the axes with handle AX.
nicholsplot(..., plotoptions) plots the Nichols plot with the options specified in plotoptions. Type
help nicholsoptions
for more details.
```

Example

```
See Also getoptions, nichols, setoptions

Purpose
Compute LTI model norm

\section*{Syntax}
```

norm
norm(sys,inf)
norm(sys,inf,tol)
[ninf,fpeak] = norm(sys,inf)

```
norm computes the \(H_{2}\) or \(L_{\infty}\) norm of a continuous- or discrete-time LTI model.

\section*{H2 Norm}

The \(\mathrm{H}_{2}\) norm of a stable continuous system with transfer function \(H(s)\), is the root-mean-square of its impulse response, or equivalently
\[
|H|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left(H(j \omega)^{H} H(j \omega)\right) d \omega}
\]

This norm measures the steady-state covariance (or power) of the output response \(y=H w\) to unit white noise inputs \(w\).
\[
\|H\|_{2}^{2}=\lim _{t \rightarrow \infty} E\left\{y(t)^{T} y(t)\right\}, \quad E\left(w(t) w(\tau)^{T}\right)=\delta(t-\tau) I
\]

\section*{Infinity Norm}

The infinity norm is the peak gain of the frequency response, that is,
\[
\begin{array}{ll}
|H(s)|_{\infty}=\max _{\omega}|H(j \omega)| & \text { (SISO case) } \\
\|H(s)\|_{\infty}=\max _{\omega} \sigma_{\max }(H(j \omega)) & \text { (MIMO case) }
\end{array}
\]
where \(\sigma_{\max }(\).\() denotes the largest singular value of a matrix.\)
The discrete-time counterpart is
\[
\|H(z)\|_{\infty}=\max _{\theta \in[0, \pi]} \sigma_{\max }\left(H\left(e^{j \theta}\right)\right)
\]

\section*{Usage}
norm(sys) or norm(sys,2) both return the \(H_{2}\) norm of the TF, SS, or ZPK model sys. This norm is infinite in the following cases:
- sys is unstable.
- sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the frequency \(\omega=\infty\) ).

Note that norm(sys) produces the same result as
```

sqrt(trace(covar(sys,1)))

```
norm(sys,inf) computes the infinity norm of any type of LTI model sys. This norm is infinite if sys has poles on the imaginary axis in continuous time, or on the unit circle in discrete time.
norm(sys,inf,tol) sets the desired relative accuracy on the computed infinity norm (the default value is tol=1e-2).
[ninf,fpeak] = norm(sys,inf) also returns the frequency fpeak where the gain achieves its peak value.

\section*{Example}

Consider the discrete-time transfer function
\[
H(z)=\frac{z^{3}-2.841 z^{2}+2.875 z-1.004}{z^{3}-2.417 z^{2}+2.003 z-0.5488}
\]
with sample time 0.1 second. Compute its \(H_{2 \text { norm by typing }}\)
```

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)
ans =
1.2438

```

Compute its infinity norm by typing
```

[ninf,fpeak] = norm(H,inf)
ninf =
2.5488
fpeak =
3.0844

```

These values are confirmed by the Bode plot of \(H(z)\).
```

bode(H)

```

Bode Diagrams


The gain indeed peaks at approximately \(3 \mathrm{rad} / \mathrm{sec}\) and its peak value in dB is found by typing
```

20*log10(ninf)

```

MATLAB returns ans \(=\) 8.1268

\title{
Algorithm \\ References \\ [1] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the \(H_{\infty}\)-Norm of a Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.
}

See Also
bode, freqresp, sigma

\section*{nyquist}

\section*{Purpose \\ Nyquist plot of LTI models}

\section*{Syntax}
```

nyquist
nyquist(sys)
nyquist(sys,w)
nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')
[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

```

\section*{Description}
nyquist calculates the Nyquist frequency response of LTI models. When invoked without left-hand arguments, nyquist produces a Nyquist plot on the screen. Nyquist plots are used to analyze system properties including gain margin, phase margin, and stability.
nyquist (sys) plots the Nyquist response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. In the MIMO case, nyquist produces an array of Nyquist plots, each plot showing the response of one particular I/O channel. The frequency points are chosen automatically based on the system poles and zeros.
nyquist(sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval, set \(w=\{w m i n, w m a x\}\). To use particular frequency points, set \(w\) to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. Frequencies should be specified in rad/sec.
nyquist(sys1,sys2,...,sysN) or nyquist(sys1, sys2,...,sysN,w) superimposes the Nyquist plots of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous- and discrete-time systems. You can also specify a distinctive color, linestyle, and/or marker for each system plot with the syntax
```

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

```

See bode for an example.
When invoked with left-hand arguments
```

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

```
return the real and imaginary parts of the frequency response at the frequencies w (in rad/sec). re and im are 3-D arrays (see "Arguments" below for details).

Arguments

Example

The output arguments re and im are 3-D arrays with dimensions (number of outputs) \(\times\) (number of inputs) \(\times\) (length of w)

For SISO systems, the scalars re( \(1,1, k\) ) and \(\operatorname{im}(1,1, k)\) are the real and imaginary parts of the response at the frequency \(\omega_{k}=\mathrm{w}(\mathrm{k})\).
\[
\begin{aligned}
\mathrm{re}(1,1, \mathrm{k}) & =\operatorname{Re}\left(h\left(j \omega_{k}\right)\right) \\
\operatorname{im}(1,1, \mathrm{k}) & =\operatorname{Im}\left(h\left(j \omega_{k}\right)\right)
\end{aligned}
\]

For MIMO systems with transfer function \(H(s)\), re (: , : , k) and \(\operatorname{im}(:,:, k)\) give the real and imaginary parts of \(H\left(j \omega_{k}\right)\) (both arrays with as many rows as outputs and as many columns as inputs). Thus,
\[
\begin{aligned}
\operatorname{re}(\mathbf{i}, \mathbf{j}, \mathbf{k}) & =\operatorname{Re}\left(h_{i j}\left(j \omega_{k}\right)\right) \\
\operatorname{im}(\mathbf{i}, \mathbf{j}, \mathbf{k}) & =\operatorname{Im}\left(h_{i j}\left(j \omega_{k}\right)\right)
\end{aligned}
\]
where \(h_{i j}\) is the transfer function from input \(j\) to output \(i\).
Plot the Nyquist response of the system
\[
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
\]
```

H = tf([2 5 1],[1 2 3])
nyquist(H)

```


The nyquist function has support for M-circles, which are the contours of the constant closed-loop magnitude. M-circles are defined as the locus of complex numbers where
\[
T(j \omega)=\left|\frac{G(j \omega)}{1+G(j \omega)}\right|
\]
is a constant value. In this equation, \(\omega\) is the frequency in radians/second, and \(G\) is the collection of complex numbers that satisfy the constant magnitude requirement.

To activate the grid, select Grid from the right-click menu or type grid
at the MATLAB prompt. This figure shows the M circles for transfer function \(H\).


You have two zoom options available from the right-click menu that apply specifically to Nyquist plots:
- Tight -Clips unbounded branches of the Nyquist plot, but still includes the critical point \((-1,0)\)
- On (-1,0) - Zooms around the critical point (-1,0)

Also, click anywhere on the curve to activate data markers that display the real and imaginary values at a given frequency. This figure shows the nyquist plot with a data marker.


See Also
bode, evalfr, freqresp, ltiview, nichols, sigma

\section*{Purpose}

Plot Nyquist frequency responses and return plot handle
Syntax
h = nyquistplot(sys)
nyquistplot(sys, \{wmin, wmax\})
nyquistplot(sys,w)
nyquistplot(sys1,sys2,...,w)
nyquistplot(AX,...)
nyquistplot(..., plotoptions)

\section*{Description}
\(\mathrm{h}=\) nyquistplot(sys) draws the Nyquist plot of the LTI model sys (created with tf, zpk, ss, or frd). It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help nyquistoptions

```
for a list of available plot options.
The frequency range and number of points are chosen automatically. See bode for details on the notion of frequency in discrete time.
nyquistplot (sys, \{wmin, wmax\}) draws the Nyquist plot for frequencies between wmin and wmax (in rad/s).
nyquistplot (sys,w) uses the user-supplied vector w of frequencies (in \(\mathrm{rad} / \mathrm{s}\) ) at which the Nyquist response is to be evaluated. See logspace to generate logarithmically spaced frequency vectors.
nyquistplot(sys1, sys2, ..., w) draws the Nyquist plots of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The frequency vector \(w\) is optional. You can also specify a color, line style, and marker for each system, as in
```

nyquistplot(sys1,'r',sys2,'y--',sys3,'gx')

```
nyquistplot (AX, ...) plots into the axes with handle AX.
nyquistplot(..., plotoptions) plots the Nyquist response with the options specified in plotoptions. Type
help nyquistoptions
for more details.

Example
Plot the Nyquist frequency response and change the units to \(\mathrm{rad} / \mathrm{s}\).
```

sys = rss(5);
h = nyquistplot(sys);
% Change units to radians per second.
setoptions(h,'FreqUnits','rad/s');

```

\author{
See Also \\ getoptions, nyquist, setoptions
}

\section*{Purpose Observability matrix}

\section*{Syntax}
obsv
Ob = obsv(sys)

Description

Example
obsv computes the observability matrix for state-space systems. For an \(n\)-by- \(n\) matrix A and a \(p\)-by- \(n\) matrix \(\mathrm{C}, \operatorname{obsv}(\mathrm{A}, \mathrm{C})\) returns the observability matrix
\[
O b=\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right]
\]
with \(n\) columns and \(n p\) rows.
\(\mathrm{Ob}=\mathrm{obsv}(\) sys) calculates the observability matrix of the state-space model sys. This syntax is equivalent to executing
\[
0 b=o b s v(s y s . A, s y s . C)
\]

The model is observable if Ob has full rank \(n\).

Determine if the pair
\[
\begin{array}{lrr}
A= & & \\
1 & 1 \\
4 & -2 \\
C= & \\
& \\
1 & 0 \\
0 & 1
\end{array}
\]
is observable. Type
```

 Ob = obsv(A,C);
 % Number of unobservable states
 unob = length(A) -rank(Ob)
    ```

MATLAB responds with
```

unob =

```
    0

\author{
Caveat
}
obsv is here for educational purposes and is not recommended for serious control design. Computing the rank of the observability matrix is not recommended for observability testing. Ob will be numerically singular for most systems with more than a handful of states. This fact is well documented in the control literature. For example, see section III in http://lawww.epfl.ch/webdav/site/la/users/105941/public/NumCompCtrl.pdf

\section*{See Also \\ obsvf}

\section*{Purpose}

Compute observability staircase form

\section*{Syntax}

Description

\section*{Example}
```

[Abar, Bbar, Cbar, T, k] = obsvf(A,B,C)
obsvf(A,B,C,tol)

``` of \(A\), then there exists a similarity transformation such that
\[
\bar{A}=T A T^{T}, \quad \bar{B}=T B, \quad \bar{C}=C T^{T}
\] unobservable modes. number of states in \(A_{\infty}\) the observable portion of Abar. it defaults to \(10 * n *\) norm ( \(a, 1\) ) *eps.

Form the observability staircase form of

If the observability matrix of ( \(\mathrm{A}, \mathrm{C}\) ) has rank \(r \leq n\), where \(n\) is the size
where \(T\) is unitary and the transformed system has a staircase form with the unobservable modes, if any, in the upper left corner.
\[
\bar{A}=\left[\begin{array}{cc}
A_{n o} & A_{12} \\
0 & A_{o}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{l}
B_{n o} \\
B_{0}
\end{array}\right], \quad \bar{C}=\left[\begin{array}{ll}
0 & C_{0}
\end{array}\right]
\]
where ( \(C_{o}, A_{o}\) ) is observable, and the eigenvalues of \(A_{n o}\) are the
[Abar, Bbar, Cbar, T, k ] = obsvf(A, B, C) decomposes the state-space system with matrices A, B, and C into the observability staircase form Abar, Bbar, and Cbar, as described above. \(T\) is the similarity transformation matrix and k is a vector of length \(n\), where \(n\) is the number of states in A. Each entry of \(k\) represents the number of observable states factored out during each step of the transformation matrix calculation [1]. The number of nonzero elements in \(k\) indicates how many iterations were necessary to calculate \(T\), and sum ( \(k\) ) is the
obsvf( \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{tol}\) ) uses the tolerance tol when calculating the observable/unobservable subspaces. When the tolerance is not specified,
\[
A=
\]

\section*{obsvf}
\begin{tabular}{|c|c|c|}
\hline & 1 & 1 \\
\hline & 4 & -2 \\
\hline \multicolumn{3}{|l|}{\(\mathrm{B}=\)} \\
\hline & 1 & -1 \\
\hline & 1 & -1 \\
\hline \multicolumn{3}{|l|}{\(\mathrm{C}=\)} \\
\hline & 1 & 0 \\
\hline & 0 & 1 \\
\hline
\end{tabular}
```

by typing
[Abar, Bbar, Cbar, T,k] = obsvf(A,B,C)
Abar =
$1 \quad 1$
4 -2
Bbar =
$1 \quad 1$
1 -1
Cbar =
10
$0 \quad 1$
T =
10
$0 \quad 1$
k =
20

```

Algorithm
References

See Also
[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.
obsvf is an M-file that implements the Staircase Algorithm of [1] by calling ctrbf and using duality.
ctrbf, obsv

\section*{Purpose \\ Generate continuous second-order systems}

\section*{Syntax}
\[
\begin{aligned}
& {[A, B, C, D]=\text { ord2 }(w n, z)} \\
& {[\text { num, den }]=\text { ord2 }(w n, z)}
\end{aligned}
\]

\section*{Description}
\([A, B, C, D]=\) ord2 \((w n, z)\) generates the state-space description ( \(A, B, C, D\) ) of the second-order system
\[
h(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
\]
given the natural frequency wn \(\left(\omega_{n}\right)\) and damping factor \(\mathrm{z}(\zeta)\). Use ss to turn this description into a state-space object.
[num, den] = ord2(wn,z) returns the numerator and denominator of the second-order transfer function. Use tf to form the corresponding transfer function object.

\section*{Example}

To generate an LTI model of the second-order transfer function with damping factor \(\zeta_{5}=0.4\) and natural frequency \(\omega_{n}=2.4 \mathrm{rad} / \mathrm{sec}\). , type
```

[num,den] = ord2(2.4,0.4)
num =
1
den =
sys = tf(num,den)
Transfer function:
1
s^2 + 1.92 s + 5.76

```
    \(1.0000 \quad 1.9200 \quad 5.7600\)

\section*{See Also}
rss, ss, tf

\section*{Iti/order}

Purpose LTI model order

\section*{Syntax \\ NS = order(sys)}

Description
NS = order(sys) returns the model order NS. The order of an LTI model is the number of poles (for proper transfer functions) or the number of states (for state-space models). For improper transfer functions, the order is defined as the minimum number of states needed to build an equivalent state-space model (ignoring pole/zero cancellations).
order(sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI arrays, NS is an array of the same size listing the orders of each model in sys.

\section*{Caveat order does not attempt to find minimal realizations of MIMO systems.} For example, consider this 2-by-2 MIMO system:
```

s=tf('s');
h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];
order(h)
ans =

```

6

Although \(h\) has a 3rd order realization, order returns 6. Use
```

order(ss(h,'min')

```
to find the minimal realization order.

\footnotetext{
See Also
pole, balred, ltimodels
}

\section*{Purpose}

Padé approximation of model with time delays

\section*{Syntax}
```

[num,den] = pade(T,N)
sysx = pade(sys,N)
sysx = pade(sys,NU,NY,NINT)

```

\section*{Description}
pade approximates time delays by rational LTI models. Such
approximations are useful to model time delay effects such as transport and computation delays within the context of continuous-time systems. The Laplace transform of an time delay of \(T\) seconds is \(\exp (-s T)\). This exponential transfer function is approximated by a rational transfer function using Padé approximation formulas [1].
[num, den] = pade ( \(\mathrm{T}, \mathrm{N}\) ) returns the Nth-order Padé approximation of the continuous-time I/O delay \(\exp (-s T)\) in transfer function form. The row vectors num and den contain the numerator and denominator coefficients in descending powers of \(s\). Both are Nth-order polynomials.

When invoked without output arguments,
```

pade(T,N)

```
plots the step and phase responses of the Nth-order Padé approximation and compares them with the exact responses of the model with I/O delay T. Note that the Padé approximation has unit gain at all frequencies.
sysx = pade(sys,N) produces a delay-free approximation sysx of the continuous delay system sys. All delays are replaced by their Nth-order Padé approximation. See Time Delays for details on LTI models with delays.
sysx = pade(sys,NU,NY,NINT) specifies independent approximation orders for each input, output, and I/O or internal delay. Here NU, NY, and NINT are integer arrays such that
- NU is the vector of approximation orders for the input channel
- NY is the vector of approximation orders for the output channel
- NINT is the approximation order for I/O delays (TF or ZPK models) or internal delays (state-space models)

You can use scalar values for NU, NY, or NINT to specify a uniform approximation order. You can also set some entries of NU, NY, or NINT to Inf to prevent approximation of the corresponding delays.

Compute a third-order Padé approximation of a 0.1 second I/O delay and compare the time and frequency responses of the true delay and its approximation. To do this, type
```

pade(0.1,3)

```


Limitations

References

See Also

High-order Padé approximations produce transfer functions with clustered poles. Because such pole configurations tend to be very sensitive to perturbations, Padé approximations with order \(\mathrm{N}>10\) should be avoided.
[1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1989, pp. 557-558.
c2d, delay2z, ltimodels, ltiprops

Purpose Parallel connection of two LTI models

Syntax
parallel
sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)

\section*{Description}
parallel connects two LTI models in parallel. This function accepts any type of LTI model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys = parallel(sys1,sys2) forms the basic parallel connection shown below.


This command is equivalent to the direct addition
```

sys = sys1 + sys2

```
(See Addition and Subtraction for details on LTI system addition.) sys = parallel(sys1, sys2,inp1, inp2, out1,out2) forms the more general parallel connection.


The index vectors inp1 and inp2 specify which inputs \(u_{1}\) of sys1 and which inputs \(u_{2}\) of sys2 are connected. Similarly, the index vectors out1 and out2 specify which outputs \(y_{1}\) of sys1 and which outputs \(y_{2}\) of sys2 are summed. The resulting model sys has \(\left[v_{1} ; u ; v_{2}\right]\) as inputs and \(\left[z_{1} ; y ; z_{2}\right]\) as outputs.

Example See Kalman Filtering for an example.
See Also append, feedback, series

Purpose Pole placement design
Syntax \(\quad K=\operatorname{place}(A, B, p)\)
[K,prec,message] = place (A,B, P )
Description Given the single- or multi-input system
\[
\dot{x}=A x+B u
\]
and a vector \(p\) of desired self-conjugate closed-loop pole locations, place computes a gain matrix K such that the state feedback \(u=-K x\) places the closed-loop poles at the locations \(p\). In other words, the eigenvalues of \(A-B K\) match the entries of \(p\) (up to the ordering).
\(K=p l a c e(A, B, p)\) computes a feedback gain matrix \(K\) that achieves the desired closed-loop pole locations \(p\), assuming all the inputs of the plant are control inputs. The length of \(p\) must match the row size of \(A\). place works for multi-input systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in \(A\) or \(B\).
[K,prec,message] = place (A,B, p ) also returns prec, an estimate of how closely the eigenvalues of \(A-B K\) match the specified locations \(p\) (prec measures the number of accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is more than \(10 \%\) off from the desired location, message contains a warning message.
You can also use place for estimator gain selection by transposing the A matrix and substituting \(C^{\prime}\) for \(B\).
\[
1=\operatorname{place}\left(A^{\prime}, C^{\prime}, \mathrm{p}\right) .^{\prime}
\]

Example Consider a state-space system ( \(a, b, c, d\) ) with two inputs, three outputs, and three states. You can compute the feedback gain matrix needed to place the closed-loop poles at \(p=\left[\begin{array}{ll}1.1 & 23 \\ 5.0\end{array}\right]\) by
```

p = [1 1.23 5.0];
K = place(a,b,p)

```
Algorithm
References [1] Kautsky, J. and N.K. Nichols, "Robust Pole Assignment in Linear State Feedback," Int. J. Control, 41 (1985), pp. 1129-1155.[2] Laub, A.J. and M. Wette, Algorithms and Software for PoleAssignment and Observers, UCRL-15646 Rev. 1, EE Dept., Univ. ofCalif., Santa Barbara, CA, Sept. 1984.
See Also ..... acker, lqr, rlocus

\section*{Purpose Compute poles of LTI system}

\section*{Syntax \\ pole}

Description
pole computes the poles p of the SISO or MIMO LTI model sys.

Algorithm

Limitations

See Also

For state-space models, the poles are the eigenvalues of the \(A\) matrix, or the generalized eigenvalues of \(A-\lambda E\) in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are computed as the union of the poles for each SISO entry. If some columns or rows have a common denominator, the roots of this denominator are counted only once.

Multiple poles are numerically sensitive and cannot be computed to high accuracy. A pole \(\lambda\) with multiplicity \(m\) typically gives rise to a cluster of computed poles distributed on a circle with center \(\lambda\) and radius of order
\[
\rho \approx \varepsilon^{1 / m}
\]
where E is the relative machine precision (eps).
damp, esort, dsort, pzmap, zero

\section*{Purpose \\ Compute pole-zero map of LTI models}

Syntax
```

pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

```

\section*{Description}
pzmap(sys) plots the pole-zero map of the continuous- or discrete-time LTI model sys. For SISO systems, pzmap plots the transfer function poles and zeros. For MIMO systems, it plots the system poles and transmission zeros. The poles are plotted as x's and the zeros are plotted as o's.
pzmap(sys1,sys2,...,sysN) plots the pole-zero map of several LTI models on a single figure. The LTI models can have different numbers of inputs and outputs and can be a mix of continuous and discrete systems.

When invoked with left-hand arguments,
\[
[p, z]=\text { pzmap(sys) }
\]
returns the system poles and (transmission) zeros in the column vectors p and \(z\). No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the \(s\) - or \(z\)-plane.

\section*{Example}

Plot the poles and zeros of the continuous-time system.
\[
\begin{aligned}
& H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
& H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ; \text { sgrid } \\
& \operatorname{pzmap}(H)
\end{aligned}
\]

Algorithm
pzmap uses a combination of pole and zero.

\section*{See Also}
damp, esort, dsort, pole, rlocus, sgrid, zgrid, zero

\section*{Purpose}

Plot pole-zero map of LTI model and return plot handle
Syntax
```

h = pzplot(sys)
pzplot(sys1,sys2,...)
pzplot(AX,...)
pzplot(..., plotoptions)

```
\(\mathrm{h}=\mathrm{pzplot}(\) sys) computes the poles and (transmission) zeros of the LTI model sys and plots them in the complex plane. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help pzoptions

```
for a list of available plot options.
pzplot (sys1, sys2, ...) shows the poles and zeros of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. You can specify distinctive colors for each model, as in
```

pzplot(sys1,'r',sys2,'y',sys3,'g')

```
pzplot (AX,...) plots into the axes with handle AX.
pzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
help pzoptions
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the \(s\) - or \(z\)-plane.

For arrays sys of LTI models, pzmap plots the poles and zeros of each model in the array on the same diagram.
```

Example Use the plot handle to change the color of the plot's title.
sys $=r s s(3,2,2) ;$
h = pzplot(sys);
$\mathrm{p}=$ getoptions(h); \% Get options for plot.
p.Title.Color $=[1,0,0]$; Change title color in options. setoptions(h,p); \%Apply options to plot.

```

See Also
getoptions, pzmap, setoptions

\section*{Purpose Real part of frequency response for FRD model}

\section*{Syntax realfrd = real(sys)}

Description realfrd \(=\) real (sys) computes the real part of the frequency response contained in the FRD model sys, including the contribution of input, output, and I/O delays. The output realfrd is an FRD object containing the values of the real part across frequencies.

\author{
See Also \\ frd/abs, frd/imag
}

Purpose Form regulator given state-feedback and estimator gains
```

Syntax
rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)

```
rsys \(=\) reg(sys, \(K, L\) ) forms a dynamic regulator or compensator rsys given a state-space model sys of the plant, a state-feedback gain matrix \(K\), and an estimator gain matrix \(L\). The gains \(K\) and \(L\) are typically designed using pole placement or LQG techniques. The function reg handles both continuous- and discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are measured. The regulator rsys is obtained by connecting the state-feedback law \(u=-K x\) and the state estimator with gain matrix L (see estim). For a plant with equations
\[
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
\]
this yields the regulator
\[
\begin{aligned}
\dot{\hat{x}} & =[A-L C-(B-L D) K] \hat{x}+L y \\
u & =-K \hat{x}
\end{aligned}
\]

This regulator should be connected to the plant using positive feedback.

rsys = reg(sys,K,L,sensors,known, controls) handles more general regulation problems where:
- The plant inputs consist of controls \(u\), known inputs \(u_{d}\), and stochastic inputs \(w\).
- Only a subset \(y\) of the plant outputs is measured.

The index vectors sensors, known, and controls specify \(y, u_{d}\), and \(u\) as subsets of the outputs and inputs of sys. The resulting regulator uses \(\left[u_{d} ; y\right]\) as inputs to generate the commands \(u\) (see figure below).


Example Given a continuous-time state-space model
\[
\text { sys }=s s(A, B, C, D)
\]
with seven outputs and four inputs, suppose you have designed:
- A state-feedback controller gain K using inputs 1,2 , and 4 of the plant as control inputs
- A state estimator with gain \(L\) using outputs 4,7 , and 1 of the plant as sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete regulation system by
```

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys,K,L,sensors,known,controls)

```

See Also
estim, kalman, lqgreg, lqr, dlqr, place

\section*{Purpose}

Change shape of LTI array
```

Syntax
sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

```
sys \(=\) reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape (sys,[s1 s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by...-sk array of LTI models. Equivalently, sys = reshape (sys,[s1 s2 ... sk]) reshapes the LTI array sys into an s1-by-s2-by...-sk array of LTI models. With either syntax, there must be s1*s2*...*sk models in sys to begin with.

\section*{Example}

See Also
ndims, size

Purpose Evans root locus
```

Syntax
rlocus
rlocus(sys)
rlocus(sys1,sys2,...)
[r,k] = rlocus(sys)
r = rlocus(sys,k)

```

Description
rlocus computes the Evans root locus of a SISO open-loop model. The root locus gives the closed-loop pole trajectories as a function of the feedback gain \(k\) (assuming negative feedback). Root loci are used to study the effects of varying feedback gains on closed-loop pole locations. In turn, these locations provide indirect information on the time and frequency responses.
rlocus(sys) calculates and plots the root locus of the open-loop SISO model sys. This function can be applied to any of the following negative feedback loops by setting sys appropriately.


If sys has transfer function
\[
h(s)=\frac{n(s)}{d(s)}
\]
the closed-loop poles are the roots of
\[
d(s)+k n(s)=0
\]
rlocus adaptively selects a set of positive gains \(k\) to produce a smooth plot. Alternatively,
```

rlocus(sys,k)

```
uses the user-specified vector k of gains to plot the root locus.
rlocus(sys1, sys2, ...) draws the root loci of multiple LTI models sys1, sys2,... on a single plot. You can specify a color, line style, and marker for each model, as in
```

rlocus(sys1,'r',sys2,'y:',sys3,'gx').

```

When invoked with output arguments, [r,k] = rlocus(sys) \(r=r l o c u s(s y s, k)\)
return the vector \(k\) of selected gains and the complex root locations \(r\) for these gains. The matrix \(r\) has length ( \(k\) ) columns and its \(j\) th column lists the closed-loop roots for the gain \(k(j)\).

\section*{Example}

Find and plot the root-locus of the following system.
\[
\begin{aligned}
& h(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
& h=\operatorname{tf}\left(\left[\begin{array}{ll}
2 & 5
\end{array} 1\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ; \\
& \text { rlocus }(\mathrm{h})
\end{aligned}
\]


You can use the right-click menu for rlocus to add grid lines, zoom in or out, and invoke the Property Editor to customize the plot. Also, click anywhere on the curve to activate a data marker that displays the gain value, pole, damping, overshoot, and frequency at the selected point.
pole, pzmap
```

Purpose Plot root locus and return plot handle
Syntax h = rlocusplot(sys)
rlocusplot(sys,k)
rlocusplot(sys1,sys2,...)
rlocusplot(AX,...)
rlocusplot(..., plotoptions)

```

Description
\(\mathrm{h}=\) rlocusplot(sys) computes and plots the root locus of the single-input, single-output LTI model sys. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help pzoptions

```
for a list of available plot options.
See rlocus for a discussion of the feedback structure and algorithms used to calculate the root locus.
rlocusplot (sys,k) uses a user-specified vector \(k\) of gain values.
rlocusplot(sys1,sys2,...) draws the root loci of multiple LTI models sys1, sys2,... on a single plot. You can specify a color, line style, and marker for each model, as in
```

rlocusplot(sys1,'r',sys2,'y:',sys3,'gx')

```
rlocusplot (AX, ...) plots into the axes with handle AX.
rlocusplot(..., plotoptions) plots the root locus with the options specified in plotoptions. Type
help pzoptions
for more details.
```

Example Use the plot handle to change the title of the plot.
sys = rss(3);
h = rlocusplot(sys);
p = getoptions(h); % Get options for plot.
p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to plot.

```

See Also
getoptions, rlocus, setoptions

\section*{Purpose Generate stable random continuous test model}

\section*{Syntax}
```

rss(n)
rss(n,p)
rss(n,p,m,s1,...,sn)produces

```

\section*{Description}

Example
rss( n ) produces a stable random n -th order model with one input and one output and returns the model in the state-space object sys.
rss ( \(\mathrm{n}, \mathrm{p}\) ) produces a random nth order stable model with one input and \(p\) outputs, and rss( \(n, p, m\) ) produces a random \(n\)-th order stable model with \(m\) inputs and \(p\) outputs. The output sys is always a state-space model.
rss( \(n, p, m, s 1, \ldots, s n)\) produces an s1-by-...-by-sn array of random \(n\)-th order stable state-space models with \(m\) inputs and \(p\) outputs.
Use tf, frd, or zpk to convert the state-space object sys to transfer function, frequency response, or zero-pole-gain form.

Obtain a stable random continuous LTI model with three states, two inputs, and two outputs by typing
sys \(=r s s(3,2,2)\)
a =
\begin{tabular}{rrrr} 
& x1 & x2 & x3 \\
x1 & -0.54175 & 0.09729 & 0.08304 \\
x2 & 0.09729 & -0.89491 & 0.58707 \\
x3 & 0.08304 & 0.58707 & -1.95271
\end{tabular}
b =
\begin{tabular}{rrr} 
& u1 & u2 \\
x1 & -0.88844 & -2.41459 \\
x2 & 0 & -0.69435 \\
x3 & -0.07162 & -1.39139
\end{tabular}
c =
\(x 1 \quad x 2\) x3
\begin{tabular}{|c|c|c|c|c|}
\hline & y1 & 0.32965 & 0.14718 & 0 \\
\hline & y2 & 0.59854 & -0.10144 & 0.02805 \\
\hline \multirow[t]{4}{*}{\(\mathrm{d}=\)} & & & & \\
\hline & & u1 & u2 & \\
\hline & y1 & -0.87631 & -0.32758 & \\
\hline & y2 & 0 & 0 & \\
\hline
\end{tabular}
See Also drss, frd, tf, zpk

\section*{Purpose Series connection of two LTI models}

\section*{Syntax}
series
sys = series(sys1,sys2)
sys = series(sys1,sys2,outputs1,inputs2)

\section*{Description}
series connects two LTI models in series. This function accepts any type of LTI model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys = series(sys1,sys2) forms the basic series connection shown below.


This command is equivalent to the direct multiplication
```

sys = sys2 * sys1

```

See Multiplication for details on multiplication of LTI models.
sys = series(sys1,sys2,outputs1,inputs2) forms the more general series connection.


The index vectors outputs1 and inputs2 indicate which outputs \(y_{1}\) of sys1 and which inputs \(u_{2}\) of sys2 should be connected. The resulting model sys has \(u\) as input and \(y\) as output.

\section*{Example}

Consider a state-space system sys1 with five inputs and four outputs and another system sys2 with two inputs and three outputs. Connect the two systems in series by connecting outputs 2 and 4 of sys 1 with inputs 1 and 2 of sys2.
```

outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs1,inputs2)

```

See Also
append, feedback, parallel

\section*{Purpose Set or modify LTI model properties}

\section*{Syntax}
set
set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2', Value2,...)
set(sys,'Property')
set(sys)

Description

Example
set is used to set or modify the properties of an LTI model (see LTI Properties for background on LTI properties). Like its Handle Graphics counterpart, set uses property name/property value pairs to update property values.
set(sys, 'Property', Value) assigns the value Value to the property of the LTI model sys specified by the string 'Property'. This string can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). The specified property must be compatible with the model type. For example, if sys is a transfer function, Variable is a valid property but StateName is not (see Model-Specific Properties for details).
set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple property values with a single statement. Each property name/property value pair updates one particular property.
set(sys,'Property') displays admissible values for the property specified by 'Property '. See "Property Values" on page 2-248 below for an overview of legitimate LTI property values.
set(sys) displays all assignable properties of sys and their admissible values.

Consider the SISO state-space model created by
\[
\text { sys }=s s(1,2,3,4)
\]

You can add an input delay of 0.1 second, label the input as torque, reset the \(D\) matrix to zero, and store its DC gain in the 'Userdata' property by
```

set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys)
)

```

Note that set does not require any output argument. Check the result with get by typing
```

get(sys)
a: 1
b: 2
c: 3
d: 0
e: []
StateName: {''}
InternalDelay: [0x1 double]
Ts: 0
InputDelay: 0.1
OutputDelay: 0
InputName: {'torque'}
OutputName: {''}
InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]
Name:
Notes: {}
UserData: -2

```

Property Values

The following table lists the admissible values for each LTI property \(N_{u}\) and \(N_{y}\) denotes the number of inputs and outputs of the underlying LTI model. For \(K\)-dimensional LTI arrays, let \(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{K}\) denote the array dimensions.

\section*{LTI Properties}
\begin{tabular}{|c|c|}
\hline Property Name & Admissible Property Values \\
\hline Ts & \begin{tabular}{l}
- 0 (zero) for continuous-time systems \\
- Sample time in seconds for discrete-time systems \\
- - 1 or [] for discrete systems with unspecified sample time \\
Note: Resetting the sample time property does not alter the model data. Use c2d, d2c, or d2d for discrete/continuous and discrete/discrete conversions.
\end{tabular} \\
\hline InputDelay & \begin{tabular}{l}
Input delays specified with \\
- Nonnegative real numbers for continuous-time models (seconds) \\
- Integers for discrete-time models (number of sample periods) \\
- Scalar when \(N_{u}=1\) or system has uniform input delay \\
- Vector of length \(N_{u}\) to specify independent delay times for each input channel \\
- Array of size \(N_{y}\)-by- \(N_{u}\)-by- \(S_{1}\)-by-. . .-by- \(S_{n}\) to specify different input delays for each model in an LTI array.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Admissible Property Values \\
\hline OutputDelay & \begin{tabular}{l}
delays specified withOutput \\
- Nonnegative real numbers for continuous-time models (seconds) \\
- Integers for discrete-time models (number of sample periods) \\
- Scalar when \(N_{y}=1\) or system has uniform output delay \\
- Vector of length \(N_{y}\) to specify independent delay times for each output channel \\
- Array of size \(N_{y}\)-by- \(N_{u}\)-by- \(S_{1}\)-by-. . .-by- \(S_{n}\) to specify different output delays for each model in an LTI array.
\end{tabular} \\
\hline InputName & \begin{tabular}{l}
- String for single-input systems, for example, 'thrust' \\
- Cell vector of strings for multi-input systems (with as many cells as inputs), for example, \{'u';'w'\} for a two-input system \\
- Padded array of strings with as many rows as inputs, for example, \\
['rudder ' ; 'aileron']
\end{tabular} \\
\hline \begin{tabular}{l}
OutputDelay \\
Notes \\
UserData
\end{tabular} & \begin{tabular}{l}
Same as InputDelay \\
String, array of strings, or cell array of strings \\
Arbitrary MATLAB variable
\end{tabular} \\
\hline
\end{tabular}

\section*{State-Space Model Properties}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Property \\
Name
\end{tabular} & Admissible Property Values \\
\hline StateName & Same as InputName (with Input replaced by State) \\
a, b, c, d, e & \begin{tabular}{l} 
Real- or complex-valued state-space matrices \\
(multidimensional arrays, in the case of LTI arrays) \\
with compatible dimensions for the number of \\
states, inputs, and outputs. See The Size of LTI \\
Array Data for SS Models.
\end{tabular} \\
InternalDelay & \begin{tabular}{l} 
This property contains internal representations of \\
delays in state-space. Internal delays in SS objects \\
are creating when converting from ZPK or TF \\
objects with I/O delays. We do not recommmend \\
using set to modify this property. See Time Delays \\
for more information.
\end{tabular} \\
\hline
\end{tabular}

\section*{TF Model Properties}
\begin{tabular}{|c|c|}
\hline Property Name & Admissible Property Values \\
\hline \multirow[t]{3}{*}{num, den} & - Real- or complex-valued row vectors for the coefficients of the numerator or denominator polynomials in the SISO case. List the coefficients in descending powers of the variable \(s\) or \(z\) by default, and in ascending powers of \(q=z^{-1}\) when the Variable property is set to ' \(q\) ' or \\
\hline & - \(N_{y}\)-by- \(N_{u}\) cell arrays of real- or complex-valued row vectors in the MIMO case, for example, \(\left\{\left[\begin{array}{ll}1 & 2\end{array}\right] ;\left[\begin{array}{lll}1 & 0 & 3\end{array}\right]\right\}\) for a two-output/one-input transfer function \\
\hline & - \(N_{y}\)-by- \(N_{u}\)-by- \(S_{1}\)-by-. -by- \(S_{K}\)-dimensional realor complex-valued cell arrays for MIMO LTI arrays \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Property \\
Name
\end{tabular} & Admissible Property Values \\
\hline Variable & \begin{tabular}{l}
- String 's' (default) or ' \(p\) ' for continuous-time systems \\
- String 'z' (default), ' \(q\) ', or ' \(z^{\wedge}-1\) ' for discrete-time systems
\end{tabular} \\
\hline ioDelay & \begin{tabular}{l}
- An matrix of dimension \(N_{y}\)-by- \(N_{u}\), where \(N_{\mathrm{y}}\) is the number of outputs and \(N_{\mathrm{u}}\) is the number of inputs. \\
- If you have an LTI array, using an \(N_{y}\)-by- \(N_{2}\) matrix populates all the LTI models in the LTI array with the specified ioDelay matrix. To specify I/O delays for individual models in the LTI array, use an \(N_{v}\)-by- \(N_{u}\)-by- \(S_{1}\)-by- \(\ldots\)-by- \(S_{K}\) array, where \(S_{1}, \ldots, S_{\mathrm{K}}\) are the dimensions of the LTI array.
\end{tabular} \\
\hline
\end{tabular}

\section*{ZPK Model Properties}


\section*{FRD Model Properties}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Property \\
Name
\end{tabular} & Admissible Property Values \\
\hline Frequency & Real-valued vector of length \(N_{f \text {-by-1, where }} N_{f}\) is the number of frequencies \\
\hline Response & \begin{tabular}{l}
- \(N_{y}\)-by- \(N_{u}\)-by- \(N_{f}\)-dimensional array of complex data for single LTI models \\
- \(N_{y}\)-by- \(N_{u^{-}}\)-by- \(N_{f \text {-by- }} S_{1}\)-by-. . .by- \(S_{K}\) dimensional array for LTI arrays
\end{tabular} \\
\hline Units & String 'rad/s' (default), or ' Hz ' \\
\hline ioDelay & \begin{tabular}{l}
- An matrix of dimension \(N_{y}\) by- \(N_{u}\), where \(N_{\mathrm{y}}\) is the number of outputs and \(N_{\mathrm{u}}\) is the number of inputs. \\
- If you have an LTI array, using an \(N_{y}\) by- \(N_{u}\) matrix populates all the LTI models in the LTI array with the specified ioDelay matrix. To specify I/O delays for individual models in the LTI array, use an \(N_{y}\)-by- \(N_{u}\)-by- \(S_{1}\)-by- . .-by- \(S_{K}\) array, where \(S_{1}, \ldots\), \(S_{\mathrm{K}}\) are the dimensions of the LTI array.
\end{tabular} \\
\hline
\end{tabular}

\section*{Remark}

For discrete-time transfer functions, the convention used to represent the numerator and denominator depends on the choice of variable (see tf for details). Like tf, the syntax for set changes to remain consistent with the choice of variable. For example, if the Variable property is set to ' \(z\) ' (the default),
```

set(h,'num',[1 2],'den',[$$
\begin{array}{lll}{1}&{3}&{4}\end{array}
$$])

```
produces the transfer function
\[
h(z)=\frac{z+2}{z^{2}+3 z+4}
\]

However, if you change the Variable to 'z^-1' (or 'q') by
```

set(h,'Variable','z^-1'),

```
the same command
```

set(h,'num',[1 2],'den',[1 3 4])

```
now interprets the row vectors [ 12 2] and [ \(\left.\begin{array}{lll}1 & 3 & 4\end{array}\right]\) as the polynomials \(1+2 z^{-1}\) and \(1+3 z^{-1}+4 z^{-2}\) and produces:
\(\bar{h}\left(z^{-1}\right)=\frac{1+2 z^{-1}}{1+3 z^{-1}+4 z^{-2}}=z h(z)\)

Note Because the resulting transfer functions are different, make sure to use the convention consistent with your choice of variable.

\section*{Purpose Create internal delays of state-space model}
```

Syntax
sys = setdelaymodel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau)
sys $=$ setdelaymodel(H,tau)

```

Description

See Also
setdelaymodel is the converse of getdelaymodel. You can use it to directly specify the internal representation of state-space models with internal delays. See getdelaymodel for more details on this internal representation. setdelaymodel is an advanced operation and is not the natural way to construct models with internal delays. See Time Delays for recommended ways of creating internal delays.
sys \(=\) setdelaymodel(A, B1, B2, C1, C2,D11,D12,D21, D22, tau) constructs the state-space model sys defined by the matrices \(A, B 1, B 2, \ldots\) and the vector of internal delays TAU. The resulting model is continuous and can be made discrete by modifying its sample time.
sys \(=\) setdelaymodel \((H\), tau \()\) constructs the state-space model sys obtained by LFT interconnection of the state-space model H with the bank of internal delays tau.

\section*{setoptions}

Purpose Set plot options for response plot
Syntax setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)

\section*{Description}
setoptions(h, PlotOpts) sets preferences for response plot using the plot handle. h is the plot handle, PlotOpts is a plot options handle containing information about plot options.

There are two ways to create a plot options handle:
- Use getoptions, which accepts a plot handle and returns a plot options handle.
\[
\mathrm{p}=\text { getoptions(h) }
\]
- Create a default plot options handle using one of the following commands:
- bodeoptions - Bode plots
- hsvoptions - Hankel singular values plots
- nicholsoptions - Nichols plots
- nyquistoptions - Nyquist plots
- pzoptions - Pole/zero plots
- sigmaoptions - Sigma plots
- timeoptions - Time plots (step, initial, impulse, etc.)

For example,
p = bodeoptions
returns a plot options handle for Bode plots.
setoptions(h, 'Property1', 'value1', ...) assigns values to property pairs instead of using PlotOpts. To find out what properties and values are available, type help <function>options. For example, for Bode plots type
help bodeoptions
setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot properties as defined in @PlotOptions, and then overrides any properties governed by the specified property/value pairs.

\section*{Examples}

To change frequency units, first create a Bode plot.
```

sys=tf(1,[lll}1\mp@code{1})
h=bodeplot(sys) % Create a Bode plot with plot handle h.

```


Now, change the frequency units from \(\mathrm{rad} / \mathrm{s}\) to Hz .

\section*{setoptions}
```

p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.
setoptions(h,p); % Apply plot options to the Bode plot and
% render.

```



The frequency units are now Hz .

To change the frequency units using property/value pairs, use this code.
```

sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');

```

The result is the same as the first example.

\section*{See Also}
getoptions

\section*{Purpose}

\section*{Syntax \\ sgrid}
\(\operatorname{sgrid}(z, w n)\)

Generate s-plane grid of constant damping factors and natural frequencies

\section*{Description}
sgrid generates, for pole-zero and root locus plots, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to \(10 \mathrm{rad} / \mathrm{sec}\) in steps of one \(\mathrm{rad} / \mathrm{sec}\), and plots the grid over the current axis. If the current axis contains a continuous \(s\)-plane root locus diagram or pole-zero map, sgrid draws the grid over the plot.
sgrid(z,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and natural frequencies in the vectors \(z\) and wn, respectively. If the current axis contains a continuous \(s\)-plane root locus diagram or pole-zero map, sgrid ( \(z, w n\) ) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the same s-plane grid.

\section*{Example}

Plot \(s\)-plane grid lines on the root locus for the following system.
\[
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
\]

You can do this by typing
```

H = tf([2 5 1],[1 2 3])
Transfer function:
2 s^2 + 5 s + 1
s^2 + 2 s + 3
rlocus(H)
sgrid

```


See Also
pzmap, rlocus, zgrid

Purpose
Syntax

Description

Plot singular values of LTI models
```

sigma
sigma(sys)
sigma(sys,w)
sigma(sys,[],type)
sigma(sys,w,type)

```
sigma calculates the singular values of the frequency response of an LTI model. For an FRD model, sys, sigma computes the singular values of sys.Response at the frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models with transfer function \(H(s)\), sigma computes the singular values of \(H(j \omega)\) as a function of the frequency \(\omega\). For discrete-time TF, SS, or ZPK models with transfer function \(H(z)\) and sample time \(T_{s}\), sigma computes the singular values of
\[
H\left(e^{j \omega T_{z}}\right)
\]
for frequencies \(\omega\) between 0 and the Nyquist frequency \(\omega_{N}=\pi / T_{s}\).
The singular values of the frequency response extend the Bode magnitude response for MIMO systems and are useful in robustness analysis. The singular value response of a SISO system is identical to its Bode magnitude response. When invoked without output arguments, sigma produces a singular value plot on the screen.
sigma(sys) plots the singular values of the frequency response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. The frequency points are chosen automatically based on the system poles and zeros, or from sys.frequency if sys is an FRD.
sigma(sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval [wmin, wmax], set w = \{wmin, wmax\}. To use particular frequency points, set \(w\) to the corresponding vector of frequencies. Use logspace to generate logarithmically spaced frequency vectors. The frequencies must be specified in rad/sec.
sigma(sys, [],type) or sigma(sys,w,type) plots the following modified singular value responses:
```

type $=1$ Singular values of the frequency response H^{-1}, where H
is the frequency response of sys.
type $=2$ Singular values of the frequency response $I+H$.
type $=3$ Singular values of the frequency response $I+H^{-1}$.

```

These options are available only for square systems, that is, with the same number of inputs and outputs.

To superimpose the singular value plots of several LTI models on a single figure, use
```

sigma(sys1,sys2,···,sysN)
sigma(sys1,sys2,...,sysN,[],type) % modified SV plot
sigma(sys1,sys2,...,sysN,w) % specify frequency range/grid

```

The models sys1, sys2, ... sysN need not have the same number of inputs and outputs. Each model can be either continuous- or discrete-time. You can also specify a distinctive color, linestyle, and/or marker for each system plot with the syntax
```

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

```

See bode for an example.
When invoked with output arguments,
```

[sv,w] = sigma(sys)
sv = sigma(sys,w)

```
return the singular values sv of the frequency response at the frequencies w. For a system with Nu input and Ny outputs, the array sv has min( \(\mathrm{Nu}, \mathrm{Ny}\) ) rows and as many columns as frequency points (length of \(w\) ). The singular values at the frequency \(w(k)\) are given by \(s v(:, k)\).

\section*{Example}

Plot the singular value responses of
\[
H(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
\]
and \(I+H(s)\).
You can do this by typing
```

H = [0 tf([3 0],[1 1 10]) ; tf([1 1],[1 5]) tf(2,[1 6])]
subplot(211)
sigma(H)
subplot(212)
sigma(H,[],2)

```


\section*{Algorithm}

See Also
sigma uses the svd function in MATLAB to compute the singular values of a complex matrix.
bode, evalfr, freqresp, ltiview, nichols, nyquist

\section*{Purpose}

Plot singular values of frequency response and return plot handle
```

h = sigmaplot(sys)
sigmaplot(sys, {wmin,wmax})
sigmaplot(sys,w)
sigmaplot(sys,w,TYPE)
sigmaplot(AX,...)
sigmaplot(..., plotoptions)

```

\section*{Discussion}
\(\mathrm{h}=\) sigmaplot(sys) produces a singular value (SV) plot of the frequency response of the LTI model sys (created with tf, zpk, ss, or frd ). It also returns the plot handle h . You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help sigmaoptions
for a list of available plot options.
The frequency range and number of points are chosen automatically. See bode for details on the notion of frequency in discrete time.
sigmaplot(sys, \{wmin, wmax\}) draws the SV plot for frequencies ranging between wmin and wmax (in rad/s).
sigmaplot(sys,w) uses the user-supplied vector w of frequencies, in \(\mathrm{rad} / \mathrm{s}\), at which the frequency response is to be evaluated. See logspace to generate logarithmically spaced frequency vectors.
sigmaplot(sys,w, TYPE) or sigmaplot (sys, [], TYPE) draws the following modified SV plots depending on the value of TYPE:
\begin{tabular}{lll} 
TYPE \(=1\) & \(-->\) & SV of inv(SYS) \\
TYPE \(=2\) & \(-->\) & SV of I + SYS \\
TYPE \(=3\) & \(-->\) & SV of I \(+\operatorname{inv(SYS)}\)
\end{tabular}
sys should be a square system when using this syntax.

\section*{sigmaplot}
sigmaplot (AX, ...) plots into the axes with handle AX.
sigmaplot(..., plotoptions) plots the singular values with the options specified in plotoptions. Type
help sigmaoptions
for more details.

Example

See Also

Use the plot handle to change the units to Hz .
```

sys = rss(5);
h = sigmaplot(sys);
% Change units to Hz.
setoptions(h,'FreqUnits','Hz');

```
getoptions, setoptions, sigma

Purpose
Syntax \(\quad\) T \(=\) sisoinit (CONFIG)
Description

Configure SISO Design Tool at startup
\(\mathrm{T}=\) sisoinit (CONFIG) returns a template T for initializing Graphical Tuning window of the SISO Design Tool with a particular control system configuration CONFIG. Available configurations include:
- CONFIG=1 - C in forward path, F in series
- CONFIG=2 - C in feedback path, F in series
- CONFIG=3 - C in forward path, feedforward F
- CONFIG=4 - Nested loop configuration
- CONFIG=5 - Internal model control (IMC) structure
- CONFIG=6 - Cascade loop configuration

This figure shows the six configurations in order.
For each configuration, you can specify the plant models G,H, initialize the compensator C and prefilter F , and configure the open- and closed-loop views by filling the corresponding fields of the structure T. Then use sisotool ( \(T\) ) to start the SISO Design Tool in the specified configuration.

Output argument T is an object with object properties. These tables list the block and loop properties.

\section*{Block Properties}
\begin{tabular}{lll|}
\hline Block & Properties & Values \\
\hline F & Name & String \\
& Description & String \\
& Value & LTI object \\
G & Name & String \\
& Value & LTI object \\
\hline
\end{tabular}

\section*{sisoinit}
\begin{tabular}{lll}
\hline Block & Properties & Values \\
H & Name & String \\
& Value & LTI object \\
C & Name & String \\
& Descripton & String \\
& Value & LTI object \\
\hline
\end{tabular}

\section*{Loop Properties}
\begin{tabular}{lll}
\hline Loops & Properties & Values \\
OL1 & Name & String \\
& \begin{tabular}{l} 
Description \\
View
\end{tabular} & String \\
CL1 & Name & 'rlocus' 'bode' \\
& \begin{tabular}{l} 
Description \\
View
\end{tabular} & \begin{tabular}{l} 
String \\
'bode'
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

\% Now launch SISO Design Tool using configuration T
sisotool(T)
See Also sisotool

\section*{Purpose Initialize SISO Design Tool}
```

Syntax sisotool(plant)
sisotool(plant,comp)
sisotool(plant,comp,sensor,prefilt)
sisotool(views)
sisotool(views,plant,comp)
sisotool(initdata)
sisotool(sessiondata)

```

Description When invoked without input arguments, sisotool opens a SISO Design GUI for interactive compensator design. This GUI allows you to design a single-input/single-output (SISO) compensator using root locus, Bode diagram, Nicholse and Nyquist techniques. You can also have the SISO Design Tool automatically design a compensator.

By default, the SISO Design Tool:
- Opens the Controls and Estimation Tools Manager with a default SISO Design Task node.
- Opens the Graphical Tuning editor with root locus and open-loop Bode diagrams.
- Places the compensator, \(\mathbf{C}\), in the forward path in series with the plant, G.
- Assumes the prefilter, \(\mathbf{F}\), and the sensor, \(\mathbf{H}\), are unity gains. Once you specify \(\mathbf{G}\) and \(\mathbf{H}\), they are fixed in the feedback structure.

The default control architecture is shown in this figure.


There are four control architectures available. See sisoinit for more information.

This picture shows the SISO Design Graphical editor.

sisotool (plant) opens the SISO Design Tool, imports plant, and initializes the plant model \(\mathbf{G}\) to plant. The workspace variable plant can be any SISO LTI model created with ss, tf, or zpk.
sisotool (plant, comp) initializes the plant model \(\mathbf{G}\) to plant, the compensator \(\mathbf{C}\) to comp.
sisotool(plant, comp, sensor, prefilt) initializes the plant \(\mathbf{G}\) to plant, compensator C to comp, sensor H to sensor, and the prefilter F to prefilt. All arguments must be SISO LTI objects.
sisotool(views) or sisotool(views, plant, comp) specifies the initial configuration of the SISO Design Tool. The argument views can be any of the following strings (or combination thereof):
- 'rlocus' - Root Locus plot
- 'bode ' - Bode diagrams of the open-loop response
- 'nichols' - Nichols plot
- 'filter' - Bode diagrams of the prefilter \(\mathbf{F}\) and the closed-loop response from the command into \(\mathbf{F}\) to the output of the compensator G (see the feedback structure figure below)

For example
sisotool('bode')
opens a SISO Design Tool with only the Bode Diagrams. Note that if there is more than one view, the views are stored in a cell array.
sisotool(initdata) initializes the SISO Design Tool with more general control system configurations. Use sisoinit to build the initialization data structure initdata.
sisotool(sessiondata) opens the SISO Design Tool with a previously saved session where sessiondata is the MAT-file for the saved session.

For more details on the SISO Design Tool, see Designing Compensators in the Control System Toolbox Getting Started guide.

See Also
bode, ltiview, rlocus, nichols

\section*{Purpose Provide output/input/array dimensions of LTI model, model order of TF,} SS, and ZPK model, and number of frequencies of FRD model

\author{
Syntax \\ \section*{Description}
}
d = size(sys)
Ny = size(sys,1)
\(\mathrm{Nu}=\) size(sys,2)
Sk = size(sys,2+k)
Ns = size(sys,'order')
Nf = size(sys,'frequency')

When invoked without output arguments, size(sys) returns a vector of the number of outputs and inputs for a single LTI model. The lengths of the array dimensions are also included in the response to size when sys is an LTI array. size is the overloaded version of the MATLAB function size for LTI objects.
d = size(sys) returns:
- The row vector \(d=[\mathrm{Ny} \mathrm{Nu}]\) for a single LTI model sys with Ny outputs and Nu inputs
- The row vector \(d=\left[\begin{array}{ll}\text { l } \\ \text { Nu S1 S2 } & \text {... } \\ \text { Sp] for an }\end{array}\right.\) S1-by-S2-by-...-by-Sp array of LTI models with Ny outputs and Nu inputs
\(\mathrm{Ny}=\) size \((\) sys, 1\()\) returns the number of outputs of sys.
\(\mathrm{Nu}=\operatorname{size}(\) sys,2) returns the number of inputs of sys.
Sk = size(sys,2+k) returns the length of the k-th array dimension when sys is an LTI array.

Ns = size(sys,' order') returns the model order of a TF, SS, or ZPK model. This is the same as the number of states for state-space models. When sys is an LTI array, ns is the maximum order of all of the models in the LTI array.
\(N f=\) size(sys,'frequency') returns the number of frequencies when sys is an FRD. This is the same as the length of sys.frequency.

\title{
Example Consider the random LTI array of state-space models sys \(=r s s(5,3,2,3)\);
}

Its dimensions are obtained by typing
size(sys)
\(3 \times 1\) array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

\section*{See Also}
isempty, issiso, ndims

\section*{Purpose Perform model reduction based on structure}
```

Syntax msys = sminreal(sys)

```

Description msys \(=\) sminreal(sys) eliminates the states of the state-space model sys that don't affect the input/output response. All of the states of the resulting state-space model msys are also states of sys and the input/output response of msys is equivalent to that of sys.
sminreal eliminates only structurally non minimal states, i.e., states that can be discarded by looking only at hard zero entries in the \(A, B\), and \(C\) matrices. Such structurally nonminimal states arise, for example, when linearizing a Simulink model that includes some unconnected state-space or transfer function blocks.

Remark

Example

The model resulting from sminreal(sys) is not necessarily minimal, and may have a higher order than one resulting from minreal(sys). However, sminreal(sys) retains the state structure of sys, while, in general, minreal(sys) does not.

Suppose you concatenate two SS models, sys1 and sys2.
```

sys = [sys1,sys2];

```

This operation is depicted in the diagram below.


If you extract the subsystem sys1 from sys, with
\[
\operatorname{sys}(1,1)
\]
all of the states of sys, including those of sys2 are retained. To eliminate the unobservable states from sys2, while retaining the states of sys1, type
sminreal(sys(1,1))

\section*{See Also \\ minreal}

\section*{Purpose}

Specify state-space models or convert LTI model to state space

\section*{Syntax}

\section*{SS}
sys \(=s s(a, b, c, d)\)
sys \(=s s(a, b, c, d, T s)\)
sys \(=s s(d)\)
sys \(=s s(a, b, c, d, l t i s y s)\)
sys_ss = ss(sys)
ss is used to create real- or complex-valued state-space models (SS objects) or to convert transfer function or zero-pole-gain models to state space.

\section*{Creation of State-Space Models}
sys \(=\mathrm{ss}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})\) creates the continuous-time state-space model
\[
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
\]

For a model with Nx states, Ny outputs, and Nu inputs:
- a is an \(N x-b y-N x\) real- or complex-valued matrix.
- b is an Nx-by-Nu real- or complex-valued matrix.
- c is an Ny-by-Nx real- or complex-valued matrix.
- d is an Ny-by-Nu real- or complex-valued matrix.

The output sys is an SS model that stores the model data (see "State-Space Models" on page 2-14). If \(D=0\), you can simply set d to the scalar 0 (zero), regardless of the dimension.
sys \(=s s(a, b, c, d, T s)\) creates the discrete-time model
\[
\begin{aligned}
x[n+1] & =A x[n]+B u[n] \\
y[n] & =C x[n]+D u[n]
\end{aligned}
\]
with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time unspecified.
sys \(=\) ss (d) specifies a static gain matrix \(D\) and is equivalent to
```

sys = ss([],[],[],d)

```
sys \(=s s(a, b, c, d, l t i s y s)\) creates a state-space model with generic LTI properties inherited from the LTI model ltisys (including the sample time). See "Generic Properties" on page 2-26 for an overview of generic LTI properties.

See "Building LTI Arrays" on page 4-12 for information on how to build arrays of state-space models.
Any of the previous syntaxes can be followed by property name/property value pairs.
```

'PropertyName',PropertyValue

```

Each pair specifies a particular LTI property of the model, for example, the input names or some notes on the model history. See set and the example below for details. Note that
\[
\text { sys }=\text { ss(a,b,c,d,'Property1',Value1, ...,'PropertyN', ValueN) }
\]
is equivalent to the sequence of commands.
```

sys = ss(a,b,c,d)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Conversion to State Space}
sys_ss = ss(sys) converts an arbitrary TF or ZPK model sys to state space. The output sys_ss is an equivalent state-space model (SS object). This operation is known as state-space realization.
sys_ss = ss(sys,'minimal') produces a state-space realization with no uncontrollable or unobservable states. This is equivalent to sys_ss \(=\) minreal(ss(sys)).

\section*{Algorithm}
```

n=[[$$
\begin{array}{ll}{1}&{1}\end{array}
$$];
d=[$$
\begin{array}{lll}{1}&{1}&{10}\end{array}
$$];
[A,B,C,D]=tf2ss(n,d);
sys=ss(tf(n,d));
A
A =
-1 -10
10
sys.a
ans =
-1 -5
2 0

```

See the balance or ssbal documentation for details.

\section*{Examples Example 1}

The command
```

sys = ss(A,B,C,D,0.05,'statename',{'position' 'velocity'},...
'inputname','force',...
'notes','Created 10/15/96')

```
creates a discrete-time model with matrices \(A, B, C, D\) and sample time 0.05 second. This model has two states labeled position and velocity, and one input labeled force (the dimensions of \(A, B, C, D\) should be consistent with these numbers of states and inputs). Finally, a note is attached with the date of creation of the model.

\section*{Example 2}

Compute a state-space realization of the transfer function
\[
H(s)=\left[\begin{array}{c}
\frac{s+1}{s^{3}+3 s^{2}+3 s+2} \\
\frac{s^{2}+3}{s^{2}+s+1}
\end{array}\right]
\]
by typing
```

H = [tf([1 1],[$$
\begin{array}{llll}{1}&{3}&{3}&{2]) ; tf([1 0 3],[\begin{array}{lll}{1}&{1}&{1])];}\end{array}]}\end{array}
$$]=[$$
\begin{array}{lll}{1}\end{array}
$$]
sys = ss(H);
size(sys)
State-space model with 2 outputs, 1 input, and 5 states.

```

Note that the number of states is equal to the cumulative order of the SISO entries of \(H(s)\).

To obtain a minimal realization of \(H(s)\), type
```

sys = ss(H,'min');
size(sys)
State-space model with 2 outputs, 1 input, and 3 states.

```

The resulting state-space model order has order three, the minimum number of states needed to represent \(H(s)\). This can be seen directly by factoring \(H(s)\) as the product of a first order system with a second order one.
\[
H(s)=\left[\begin{array}{cc}
\frac{1}{s+2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{s+1}{s^{2}+s+1} \\
\frac{s^{2}+3}{s^{2}+s+1}
\end{array}\right]
\]

See Also dss, frd, get, set, ssdata, tf, zpk

Purpose State coordinate transformation for state-space model

\section*{Syntax syst = ss2ss(sys,T)}

Description Given a state-space model sys with equations
\[
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
\]
(or their discrete-time counterpart), ss2ss performs the similarity transformation \(\bar{x}=T x\) on the state vector \(x\) and produces the equivalent state-space model sysT with equations.
\[
\begin{aligned}
& \dot{\bar{x}}=T A T^{-\frac{1}{x}}+T B u \\
& y=C T^{-\frac{1}{x}}+D u
\end{aligned}
\]
sysT = ss2ss(sys,T) returns the transformed state-space model sysT given sys and the state coordinate transformation T. The model sys must be in state-space form and the matrix T must be invertible. ss2ss is applicable to both continuous- and discrete-time models.

\section*{Example}

Perform a similarity transform to improve the conditioning of the \(A\) matrix.
```

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

```

See ssbal for a more direct approach.

\section*{See Also balreal, canon, ssbal}

\section*{Purpose}

Balance state-space model using diagonal similarity transformation
Syntax
```

[sysb,T] = ssbal(sys,condT)
ssbal

```

Description
Given a state-space model sys with matrices \((A, B, C, D)\),
[sysb,T] = ssbal(sys)
computes a diagonal similarity transformation \(T\) and a scalar \(\alpha\) such that
\[
\left[\begin{array}{cc}
T A T^{-1} & T B / \alpha \\
\alpha C T^{-1} & 0
\end{array}\right]
\]
has approximately equal row and column norms. ssbal returns the balanced model sysb with matrices
\[
\left(T A T^{-1}, T B / \alpha, \alpha C T^{-1}, D\right)
\]
and the state transformation \(\bar{x}=T x\) where \(\bar{x}\) is the new state.
[sysb,T] = ssbal(sys,condT) specifies an upper bound condT on the condition number of \(T\). Since balancing with ill-conditioned \(T\) can inadvertently magnify rounding errors, condT gives control over the worst-case roundoff amplification factor. The default value is condT=Inf.
ssbal returns an error if the state-space model sys has varying state dimensions.

Example
Consider the continuous-time state-space model with the following data.
\[
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 10^{4} & 10^{2} \\
0 & 10^{2} & 10^{5} \\
10 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{lll}
0.1 & 10 & 100
\end{array}\right] \\
& a=[1 \text { 1e4 1e2;0 1e2 1e5; 10 1 0]; } \\
& \text { b = [1;1;1]; } \\
& \text { c = [0.1 10 1e2]; } \\
& \text { sys }=\text { ss(a,b,c,0) }
\end{aligned}
\]

Balance this model with ssbal by typing
```

ssbal(sys)
a =

	x1	x2	x3
x1	1	2500	0.39063
x2	0	100	1562.5
x3	2560	64	0

b =
x1 0.125
x2 0.5
x3 32
c =
d =
u1

```
```

 y1
 0
 Continuous-time system.
    ```

Direct inspection shows that the range of numerical values has been compressed by a factor 100 and that the \(B\) and \(C\) matrices now have nearly equal norms.

\section*{Algorithm}
ssbal uses the MATLAB function balance to compute \(T\) and \(\alpha\).
See Also balreal, ss2ss

\section*{Purpose Access state-space model data}
```

Syntax
[a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

```

\section*{Description}
\([a, b, c, d]=\) ssdata(sys) extracts the matrix (or multidimensional array) data A, B, C, D from the state-space model (LTI array) sys. If sys is a transfer function or zero-pole-gain model (LTI array), it is first converted to state space. See SS-Specific Properties for more information on the format of state-space model data.

If sys is in descriptor form (non-emply E matrix), an equivalent explicit form is first derived. If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a system with delay-free dynamics).
[a,b, c, d, Ts] = ssdata(sys) also returns the sample time Ts.
You can access the remaining LTI properties of sys with get or by direct referencing, for example,
```

sys.statename

```

For arrays of state-space models with variable numbers of states, use the syntax
```

[a,b,c,d] = ssdata(sys,'cell')

```
to extract the state-space matrices of each model as separate cells in the cell arrays \(a, b, c\), and d.
```

See Also
dssdata, get, getdelaymodel, set, ss, tfdata, zpkdata

```

\section*{Purpose Stable/unstable decomposition of LTI model \\ Syntax \\ [GS,GNS]=stapsep \\ [G1,GNS] = stabsep(G,'abstol'ATOL,'reltol',RTOL) [G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA) \\ Description \\ [GS, GNS]=stapsep decomposes the LTI model into its stable and unstable parts \\ \[
G=G S+G N S
\]}
where GS contains all stable modes that can be separated from the unstable modes in a numerically stable way, and GNS contains the remaining modes. GNS is always strictly proper.
[G1,GNS] = stabsep(G,'abstol'ATOL,'reltol',RTOL) specifies absolute and relative error tolerances for the stable/unstable decomposition. The frequency reponses of \(G\) and \(G S+G N S\) should differ by no more than ATOL+RTOL*abs (G). Increasing these tolerances helps separate nearby stable and unstable modes at the expense of accuracy. The default values are ATOL=0 and RTOL=1e-8.
[G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA) produces a more general stable/unstable decomposition where G1 includes all separable poles lying in the regions defined using offset ALPHA. This can be useful when there are numerical accuracy issues. For example, if you have a pair of poles close to, but slightly to the left of, the \(j \omega\)-axis, you can decide not to include them in the stable part of the decomposition if numerical considerations lead you to believe that the poles may be in fact unstable

This table lists the stable/unstable boundaries as defined by the offset ALPHA..
\begin{tabular}{lll}
\hline Mode & Continuous Time Region & Discrete Time Region \\
\hline 1 & \(\operatorname{Re}(s)<-\operatorname{ALPHA*} \max (1,|\operatorname{Im}(s)|)\) & \(1|z|<1-\) ALPHA \\
2 & \(\operatorname{Re}(s)>A L P H A * \max (1,|\operatorname{Im}(s)|)\) & \(2|z|>1+A L P H A\) \\
\hline
\end{tabular}

The default values are MODE \(=1\) and \(\operatorname{ALPHA}=0\).

\section*{Example \\ Compute a stable/unstable decomposition with absolute error no larger} than \(1 \mathrm{e}-5\) and offset 0.1 :
```

h = zpk(1,[-2 -1 1 -0.001],0.1)
[hs,hns] = stabsep(h,'AbsTol',1e-5,'Offset',0.1);

```

The stable part of the decomposition has poles at -1 and -2 .
hshs
Zero/pole/gain:
-0.050075 (s+2.999)
( \(\mathrm{s}+1\) ) ( \(\mathrm{s}+2\) )
The unstable part of the decomposition has poles at +1 and -.001 (which is nominally stable).
```

hns
Zero/pole/gain:
0.050075 (s-1)
(s+0.001) (s-1)

```

See Also modsep

\section*{Purpose}

Syntax
Description

Example

Build LTI array by stacking LTI models or LTI arrays along array dimensions
sys = stack(arraydim,sys1,sys2,...)
sys \(=\) stack(arraydim, sys1, sys2, ...) produces an array of LTI models sys by stacking (concatenating) the LTI models (or LTI arrays) sys1,sys2,... along the array dimension arraydim. All models must have the same number of inputs and outputs (the same I/O dimensions), but the number of states can vary. The I/O dimensions are not counted in the array dimensions. See Dimensions, Size, and Shape of an LTI Array and Building LTI Arrays Using the stack Function for more information.

For arrays of state-space models with variable order, you cannot use the dot operator (e.g., sys.a) to access arrays. Use the syntax
\[
[a, b, c, d]=\text { ssdata(sys,'cell') }
\]
to extract the state-space matrices of each model as separate cells in the cell arrays \(a, b, c\), and d.

If sys1 and sys2 are two LTI models:
- stack(1, sys1, sys2) produces a 2-by-1 LTI array.
- stack(2, sys1, sys2) produces a 1-by-2 LTI array.
- stack(3, sys1, sys2) produces a 1-by-1-by-2 LTI array.

\section*{Purpose}

Step response of LTI systems

\section*{Syntax}
step
step(sys)
step(sys,t)
step calculates the unit step response of a linear system. Zero initial state is assumed in the state-space case. When invoked with no output arguments, this function plots the step response on the screen.
step(sys) plots the step response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. The step response of multi-input systems is the collection of step responses for each input channel. The duration of simulation is determined automatically based on the system poles and zeros.
step(sys,t) sets the simulation horizon explicitly. You can specify either a final time \(t=\) Tfinal (in seconds), or a vector of evenly spaced time samples of the form
\[
\mathrm{t}=0: \mathrm{dt}: \text { Tfinal }
\]

For discrete systems, the spacing dt should match the sample period. For continuous systems, dt becomes the sample time of the discretized simulation model (see "Algorithm" on page 2-294), so make sure to choose dt small enough to capture transient phenomena.

To plot the step responses of several LTI models sys1,..., sysN on a single figure, use
```

step(sys1, sys2,...,sysN)
step(sys1, sys2,...,sysN,t)

```

All systems must have the same number of inputs and outputs but may otherwise be a mix of continuous- and discrete-time systems. This syntax is useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, and/or marker for each system. For example,
```

step(sys1,'y:',sys2,'g--')

```
plots the step response of sys1 with a dotted yellow line and the step response of sys2 with a green dashed line.

When invoked with output arguments,
```

[y,t] = step(sys)
[y,t,x] = step(sys) % for state-space models only
y = step(sys,t)

```
return the output response \(y\), the time vector \(t\) used for simulation, and the state trajectories \(x\) (for state-space models only). No plot is drawn on the screen. For single-input systems, y has as many rows as time samples (length of \(t\) ), and as many columns as outputs. In the multi-input case, the step responses of each input channel are stacked up along the third dimension of \(y\). The dimensions of \(y\) are then
(length of \(t) \times\) (number of outputs) \(\times\) (number of inputs)
and \(y(:,:, j)\) gives the response to a unit step command injected in the \(j\) th input channel. Similarly, the dimensions of \(x\) are
```

(length of t)}\times\mathrm{ (number of states) }\times\mathrm{ (number of inputs)

```

Example
Plot the step response of the following second-order state-space model.
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& y=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \mathrm{a}=\left[\begin{array}{ll}
-0.5572 & -0.7814 ; 0.7814 \\
\mathrm{~b} & 0
\end{array}\right] ;\left[\begin{array}{ll}
1-1 ; 0 & 2
\end{array}\right] ; \\
& \mathrm{c}=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right] ;
\end{aligned}
\]


The left plot shows the step response of the first input channel, and the right plot shows the step response of the second input channel.

\section*{Algorithm}

Continuous-time models are converted to state space and discretized using zero-order hold on the inputs. The sampling period is chosen automatically based on the system dynamics, except when a time vector \(\mathrm{t}=0: \mathrm{dt}: \mathrm{Tf}\) is supplied ( dt is then used as sampling period).

See Also
impulse, initial, lsim, ltiview

\author{
Purpose \\ Syntax \\ \section*{Description}
}

Compute step response characteristics
S = stepinfo(y,t,yfinal)
S = stepinfo(y,t)
s = stepinfo(y)
S = stepinfo(sys
S = stepinfo(...,'SettlingTimeThreshold',ST)
s = stepinfo(...,'RiseTimeLimits',RT)

S = stepinfo(y,t,yfinal) takes step response data ( \(\mathrm{t}, \mathrm{y}\) ) and a steady-state value yfinal and returns a structure \(S\) containing the following performance indicators:
- RiseTime - Rise time
- SettlingTime - Settling time
- SettlingMin - Minimum value of y once the response has risen
- SettlingMax - Maximum value of y once the response has risen
- Overshoot - Percentage overshoot (relative to yfinal)
- Undershoot - Percentage undershoot
- Peak - Peak absolute value of y
- PeakTime - Time at which this peak is reached

For SISO responses, \(t\) and \(y\) are vectors with the same length NS. For systems with NU inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of performance metrics for each I/O pair.
\(S=\) stepinfo( \(y, t)\) uses the last sample value of \(y\) as steady-state value yfinal. \(s=\operatorname{stepinfo}(\mathrm{y})\) assumes \(\mathrm{t}=1: \mathrm{ns}\).
\(\mathrm{S}=\) stepinfo(sys) computes the step response characteristics for an LTI model sys (see tf, zpk, or ss for details).

S = stepinfo(...,'SettlingTimeThreshold',ST) lets you specify the threshold ST used in the settling time calculation. The response has settled when the error \(\mid y(t)\) - yfinal| becomes smaller than a fraction ST of its peak value. The default value is \(\mathrm{ST}=0.02(2 \%)\).

S = stepinfo(...,'RiseTimeLimits',RT) lets you specify the lower and upper thresholds used in the rise time calculation. By default, the rise time is the time the response takes to rise from 10 to \(90 \%\) of the steady-state value ( \(\mathrm{RT}=\left[\begin{array}{ll}0.1 & 0.9\end{array}\right]\) ). Note that \(\mathrm{RT}(2)\) is also used to calculate SettlingMin and SettlingMax.

\section*{Example}

Create a fifth order system and ascertain the response characteristics.
```

sys = tf([1 5],[1 2 5 7 2]);
S = stepinfo(sys,'RiseTimeLimits',[0.05,0.95])
S =

```
            RiseTime: 7.4519
SettlingTime: 13.9326
        SettlingMin: 2.3737
        SettlingMax: 2.5203
            Overshoot: 0.8112
        Undershoot: 0
            Peak: 2.5203
            PeakTime: 15.2640
See Also step, lsiminfo, ltimodels

\section*{Purpose}

Plot step response of LTI systems and return plot handle
Syntax
```

h = stepplot(sys)
stepplot(sys,Tfinal)
stepplot(sys,t)
stepplot(sys1,sys2,...,t)
stepplot(AX,...)
stepplot(..., plotoptions)

```

\section*{Description}
h = stepplot(sys) plots the step response of the LTI model sys (created with either tf, zpk, or ss). It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help timeoptions

```
for a list of available plot options.
For multiinput models, independent step commands are applied to each input channel. The time range and number of points are chosen automatically.
stepplot (sys,Tfinal) simulates the step response from \(\mathrm{t}=0\) to the final time \(t=T f i n a l\). For discrete-time models with unspecified sampling time, Tfinal is interpreted as the number of samples.
stepplot (sys, t ) uses the user-supplied time vector t for simulation. For discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the sample time for the discrete approximation to the continuous system. The step input is always assumed to start at \(\mathrm{t}=0\) (regardless of Ti ).
stepplot (sys1, sys2, ...,t) plots the step responses of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The time vector t is optional. You can also specify a color, line style, and marker for each system, as in
```

stepplot(sys1,'r',sys2,'y--',sys3,'gx')

```
stepplot (AX,...) plots into the axes with handle AX.
stepplot(..., plotoptions) plots the step response with the options specified in plotoptions. Type
help timeoptions
for more details.

\section*{Example}

See Also

Use the plot handle to normalize the responses on a step plot.
```

sys = rss(3);
h = stepplot(sys);
% Normalize responses.
setoptions(h,'Normalize','on');

```
getoptions, setoptions, step

\section*{Purpose Create or convert to transfer function model}

\section*{Syntax}
tf
sys \(=t f(n u m, d e n)\)
sys \(=\mathrm{tf}(\) num, den, Ts\()\)
sys \(=\mathrm{tf}(\mathrm{M})\)
sys \(=\mathrm{tf}\) (num,den,ltisys)
tfsys = tf(sys)
tfsys = tf(sys,'inv')

\section*{Description}
tf is used to create real- or complex-valued transfer function models (TF objects) or to convert state-space or zero-pole-gain models to transfer function form.

\section*{Creation of Transfer Functions}
sys \(=\mathrm{tf}(\) num, den) creates a continuous-time transfer function with numerator(s) and denominator(s) specified by num and den. The output sys is a TF object storing the transfer function data (see "Transfer Function Models" on page 2-8).
In the SISO case, num and den are the real- or complex-valued row vectors of numerator and denominator coefficients ordered in descending powers of \(s\). These two vectors need not have equal length and the transfer function need not be proper. For example, h = tf ([1 \(0], 1\) ) specifies the pure derivative \(h(s)=s\).

To create MIMO transfer functions, specify the numerator and denominator of each SISO entry. In this case:
- num and den are cell arrays of row vectors with as many rows as outputs and as many columns as inputs.
- The row vectors num \(\{i, j\}\) and \(\operatorname{den}\{i, j\}\) specify the numerator and denominator of the transfer function from input \(j\) to output \(i\) (with the SISO convention).

If all SISO entries of a MIMO transfer function have the same denominator, you can set den to the row vector representation of this common denominator. See "Examples" for more details.
sys \(=\mathrm{tf}(\) num, den,Ts) creates a discrete-time transfer function with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time unspecified. The input arguments num and den are as in the continuous-time case and must list the numerator and denominator coefficients in descending powers of \(z\).
sys \(=t f(M)\) creates a static gain \(M\) (scalar or matrix).
sys \(=\mathrm{tf}(\) num, den, ltisys) creates a transfer function with generic LTI properties inherited from the LTI model ltisys (including the sample time). See "Generic Properties" on page 2-26 for an overview of generic LTI properties.

There are several ways to create LTI arrays of transfer functions. To create arrays of SISO or MIMO TF models, either specify the numerator and denominator of each SISO entry using multidimensional cell arrays, or use a for loop to successively assign each TF model in the array. See "Building LTI Arrays" on page 4-12 for more information.

Any of the previous syntaxes can be followed by property name/property value pairs
```

'Property',Value

```

Each pair specifies a particular LTI property of the model, for example, the input names or the transfer function variable. See set entry and the example below for details. Note that
```

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)

```
is a shortcut for
```

sys = tf(num,den)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Transfer Functions as Rational Expressions in sor z}

You can also use real- or complex-valued rational expressions to create a TF model. To do so, first type either:
- \(s=t f(' s ')\) to specify a TF model using a rational function in the Laplace variable, s.
- \(z=\operatorname{tf}(' z ', T s)\) to specify a TF model with sample time Ts using a rational function in the discrete-time variable, \(z\).

Once you specify either of these variables, you can specify TF models directly as rational expressions in the variable \(s\) or \(z\) by entering your transfer function as a rational expression in either s or \(z\).

\section*{Conversion to Transfer Function}
tfsys = tf(sys) converts an arbitrary SS or ZPK LTI model sys to transfer function form. The output tfsys (TF object) is the transfer function of sys. By default, tf uses zero to compute the numerators when converting a state-space model to transfer function form.
Alternatively,
tfsys = tf(sys,'inv')
uses inversion formulas for state-space models to derive the numerators. This algorithm is faster but less accurate for high-order models with low gain at \(s=0\).

\section*{Examples Example 1}

Create the two-output/one-input transfer function
\[
H(p)=\left[\begin{array}{c}
\frac{p+1}{p^{2}+2 p+2} \\
\frac{1}{p}
\end{array}\right]
\]
with input current and outputs torque and ang velocity.

To do this, type
```

num = {[$$
\begin{array}{ll}{1}&{1}\end{array}
$$];1}
den = {[11 2 2] ; [11 0}]}
H = tf(num,den,'inputn','current',...
'outputn',{'torque' 'ang. velocity'},...
'variable','p')
Transfer function from input "current" to output...
p + 1
torque:
p^2 + 2 p + 2
1
ang. velocity:
p

```

Note how setting the 'variable ' property to ' p ' causes the result to be displayed as a transfer function of the variable \(p\).

\section*{Example 2}

To use a rational expression to create a SISO TF model, type
```

s = tf('s');
H = s/(s^2 + 2*s +10);

```

This produces the same transfer function as
\[
\text { h = tf([1 0],[1 } 2 \text { 10]); }
\]

\section*{Example 3}

Specify the discrete MIMO transfer function
\[
H(z)=\left[\begin{array}{cc}
\frac{1}{z+0.3} & \frac{z}{z+0.3} \\
\frac{-z+2}{z+0.3} & \frac{3}{z+0.3}
\end{array}\right]
\]
with common denominator \(d(z)=z+0.3\) and sample time of 0.2 seconds.
```

nums = {1 [1 0];[$$
\begin{array}{lll}{-1}&{2}\end{array}
$$]}3
Ts = 0.2
H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)

```

\section*{Example 4}

Compute the transfer function of the state-space model with the following data.
\[
A=\left[\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\]

To do this, type
```

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 0],[0 1])
tf(sys)
Transfer function from input 1 to output:
S
s^2 + 4 s + 5
Transfer function from input 2 to output:
s^2 + 5 s + 8
s^2 + 4 s + 5

```

Example 5
You can use a for loop to specify a 10 -by- 1 array of SISO TF models.
```

s = tf('s')
H = tf(zeros(1,1,10));
for k=1:10,
H(:,:,k) = k/(s^2+s+k);
end

```

The first statement pre-allocates the TF array and fills it with zero transfer functions.

Discrete-Time
The control and digital signal processing (DSP) communities tend to use Conventions different conventions to specify discrete transfer functions. Most control engineers use the \(z\) variable and order the numerator and denominator terms in descending powers of \(z\), for example,
\[
h(z)=\frac{z^{2}}{z^{2}+2 z+3}
\]

The polynomials \(z^{2}\) and \(z^{2}+2 z+3\) are then specified by the row vectors [ \(\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]\) and \(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\), respectively. By contrast, DSP engineers prefer to write this transfer function as
\[
h\left(z^{-1}\right)=\frac{1}{1+2 z^{-1}+3 z^{-2}}
\]
and specify its numerator as 1 (instead of \(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\) ) and its denominator as \(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\).
tf switches convention based on your choice of variable (value of the 'Variable' property).
\begin{tabular}{|c|c|}
\hline Variable & Convention \\
\hline 'z' (default) & Use the row vector [ak ... a1 a0] to specify the polynomial \(a_{k} z^{k}+\ldots+a_{1} z+a_{0}\) (coefficients ordered in descending powers of \(z\) ). \\
\hline 'z^-1', 'q' & Use the row vector [b0 b1 ... bk] to specify the polynomial \(b_{0}+b_{1} z^{-1}+\ldots+b_{k} z^{-k}\) (coefficients in ascending powers of \(z^{-1}\) or \(q\) ). \\
\hline
\end{tabular}

For example,
\[
g=t f\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right], 0.1\right)
\]
specifies the discrete transfer function
\[
g(z)=\frac{z+1}{z^{2}+2 z+3}
\]
because \(z\) is the default variable. In contrast,
\[
h=t f\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right], 0.1,{ }^{\prime}\right. \text { variable','z^-1') }
\]
uses the DSP convention and creates
\[
h\left(z^{-1}\right)=\frac{1+z^{-1}}{1+2 z^{-1}+3 z^{-2}}=z g(z)
\]

See also filt for direct specification of discrete transfer functions using the DSP convention.

Note that tf stores data so that the numerator and denominator lengths are made equal. Specifically, tf stores the values
```

num = [00 1 1]; den = [llll

```
for \(g\) (the numerator is padded with zeros on the left) and the values
```

num $=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right] ;$ den $=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

```
for \(h\) (the numerator is padded with zeros on the right).

\section*{Algorithm tf uses the MATLAB function poly to convert zero-pole-gain models, and the functions zero and pole to convert state-space models.}

\section*{See Also}
filt, frd, get, set, ss, tfdata, zpk

\section*{Purpose \\ Syntax \\ Description}

Access transfer function data
```

[num,den] = tfdata(sys)
[num,den,Ts] = tfdata(sys)

```
[num, den] = tfdata(sys) returns the numerator(s) and denominator(s) of the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or ZPK models) sys. For single LTI models, the outputs num and den of tfdata are cell arrays with the following characteristics:
- num and den have as many rows as outputs and as many columns as inputs.
- The ( \(i, j\) ) entries num \(\{i, j\}\) and den \(\{i, j\}\) are row vectors specifying the numerator and denominator coefficients of the transfer function from input \(j\) to output i. These coefficients are ordered in descending powers of \(s\) or \(z\).

For arrays sys of LTI models, num and den are multidimensional cell arrays with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function form using tf. See LTI Properties on page 2-249 for more information on the format of transfer function model data.

For SISO transfer functions, the syntax
```

[num,den] = tfdata(sys,'v')

```
forces tfdata to return the numerator and denominator directly as row vectors rather than as cell arrays (see example below).
[num,den,Ts] = tfdata(sys) also returns the sample time Ts.
You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
```

sys.variable

```

\section*{Example Given the SISO transfer function}
\[
h=\operatorname{tf}\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right]\right)
\]
you can extract the numerator and denominator coefficients by typing
```

[num,den] = tfdata(h,'v')
num =
0}
den =
1 2

```

This syntax returns two row vectors.
If you turn h into a MIMO transfer function by typing
\[
H=[h ; t f(1,[11])]
\]
the command
```

[num,den] = tfdata(H)

```
now returns two cell arrays with the numerator/denominator data for each SISO entry. Use celldisp to visualize this data. Type
```

celldisp(num)

```
and MATLAB returns the numerator vectors of the entries of H .
```

num{1} =
0 1 1
num{2} =
0 1

```
```

Similarly, for the denominators, type
celldisp(den)
den{1} =
1 2
den{2} =
1

```

See Also get, ssdata, tf, zpkdata

\section*{Purpose Total combined I/O delays for LTI model}

\section*{Syntax td = totaldelay (sys)}

Description td = totaldelay(sys) returns the total combined I/O delays for an LTI model sys. The matrix td combines contributions from the InputDelay, OutputDelay, and ioDelayMatrix properties (see set or ltiprops for details on these properties).

Delays are expressed in seconds for continuous-time models, and as integer multiples of the sample period for discrete-time models. To obtain the delay times in seconds, multiply td by the sample time sys.Ts.

\section*{Example}
```

sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2; % 2 sec input delay
sys.outputd = 1.5; % 1.5 sec output delay
td = totaldelay(sys)
td =
3.5000

```

The resulting I/O map is
\[
e^{-2 s} \times \frac{1}{s} e^{-1.5 s}=e^{-3.5 s} \frac{1}{s}
\]

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model sys.

\footnotetext{
See Also
delay2z, hasdelay
}

\section*{Purpose Transmission zeros of LTI model}

\section*{Syntax \\ zero}
z = zero(sys)
[z,gain] = zero(sys)

\section*{Description}

\section*{Algorithm}

\section*{References}

See Also
zero computes the zeros of SISO systems and the transmission zeros of MIMO systems. For a MIMO system with matrices \((A, B, C, D)\), the transmission zeros are the complex values \(\lambda\) for which the normal rank of
\[
\left[\begin{array}{cc}
A-\lambda I & B \\
C & D
\end{array}\right]
\]
drops.
\(z=\) zero(sys) returns the (transmission) zeros of the LTI model sys as a column vector.
[z,gain] = zero(sys) also returns the gain (in the zero-pole-gain sense) if sys is a SISO system.
zero is based on SLICOT routine AB08NX. Also use LAPACK routines DGEEV and DGEGV (and their complex counterparts) for eigenvalue computation.

The transmission zeros are computed using the algorithm in [1].
[1] Emami-Naeini, A. and P. Van Dooren, "Computation of Zeros of Linear Multivariable Systems," Automatica, 18 (1982), pp. 415-430.
pole, pzmap

Purpose Generate z-plane grid of constant damping factors and natural frequencies
```

Syntax
zgrid
zgrid(z,wn)
zgrid([],[])

```

Description zgrid generates, for root locus and pole-zero maps, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to \(\pi\) in steps of \(\pi / 10\), and plots the grid over the current axis. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid draws the grid over the plot without altering the current axis limits.
zgrid(z,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and normalized natural frequencies in the vectors \(z\) and wn, respectively. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid( \(z, w n\) ) draws the grid over the plot. The frequency lines for unnormalized (true) frequencies can be plotted using
```

zgrid(z,wn/Ts)

```
where Ts is the sample time.
zgrid([],[]) draws the unit circle.
Alternatively, you can select Grid from the right-click menu to generate the same z-plane grid.

Example Plot \(z\)-plane grid lines on the root locus for the system
\[
H(z)=\frac{2 z^{2}-3.4 z+1.5}{z^{2}-1.6 z+0.8}
\]
by typing
\[
\mathrm{H}=\mathrm{tf}\left(\left[\begin{array}{lll}
2 & -3.4 & 1.5
\end{array}\right],\left[\begin{array}{lll}
1 & -1.6 & 0.8
\end{array}\right],-1\right)
\]

Transfer function:
\[
\begin{gathered}
2 z^{\wedge} 2-3.4 z+1.5 \\
-----------1.6 z+0.8 \\
z^{\wedge} 2-1.6 z+1
\end{gathered}
\]

Sampling time: unspecified
To see the z-plane grid on the root locus plot, type
```

rlocus(H)
zgrid
axis('square')

```


See Also
pzmap, rlocus, sgrid

Purpose Create or convert to zero-pole-gain model
Syntax
```

zpk
sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)
sys = zpk(M)
sys = zpk(z,p,k,ltisys)
s = zpk('s')
z = zpk('z',Ts)
zsys = zpk(sys)

```

\section*{Description}
zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS models to zero-pole-gain form.

\section*{Creation of Zero-Pole-Gain Models}
sys \(=z p k(z, p, k)\) creates a continuous-time zero-pole-gain model with zeros \(z\), poles \(p\), and gain(s) k. The output sys is a ZPK object storing the model data (see "LTI Objects" on page 2-3).

In the SISO case, \(z\) and \(p\) are the vectors of real- or complex-valued zeros and poles, and \(k\) is the real- or complex-valued scalar gain.
\[
h(s)=k \frac{(s-z(1))(s-z(2)) \ldots(s-z(m))}{(s-p(1))(s-p(2)) \ldots(s-p(n))}
\]

Set z or p to [] for systems without zeros or poles. These two vectors need not have equal length and the model need not be proper (that is, have an excess of poles).

You can also use rational expressions to create a ZPK model. To do so, use either:
- \(s=z p k(' s ')\) to specify a ZPK model from a rational transfer function of the Laplace variable, s.
- z = zpk('z',Ts) to specify a ZPK model with sample time Ts from a rational transfer function of the discrete-time variable, \(z\).

Once you specify either of these variables, you can specify ZPK models directly as real- or complex-valued rational expressions in the variable s or z .

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of each SISO entry of this model. In this case:
- \(z\) and \(p\) are cell arrays of vectors with as many rows as outputs and as many columns as inputs, and \(k\) is a matrix with as many rows as outputs and as many columns as inputs.
- The vectors \(z\{i, j\}\) and \(p\{i, j\}\) specify the zeros and poles of the transfer function from input \(j\) to output \(i\).
- \(k(i, j)\) specifies the (scalar) gain of the transfer function from input \(j\) to output i.

See below for a MIMO example.
sys \(=z p k(z, p, k, T s)\) creates a discrete-time zero-pole-gain model with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time unspecified. The input arguments \(z, p, k\) are as in the continuous-time case.
sys \(=\mathrm{zpk}(\mathrm{M})\) specifies a static gain \(M\).
sys \(=z p k(z, p, k, l t i s y s)\) creates a zero-pole-gain model with generic LTI properties inherited from the LTI model ltisys (including the sample time). See "Generic Properties" on page 2-26 for an overview of generic LTI properties.

To create an array of ZPK models, use a for loop, or use multidimensional cell arrays for \(z\) and \(p\), and a multidimensional array for \(k\).

Any of the previous syntaxes can be followed by property name/property value pairs.
```

'PropertyName',PropertyValue

```

Each pair specifies a particular LTI property of the model, for example, the input names or the input delay time. See set entry and the example below for details. Note that
```

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)

```
is a shortcut for the following sequence of commands.
```

sys = zpk(z,p,k)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Zero-Pole-Gain Models as Rational Expressions in sor \(\mathbf{z}\)}

You can also use rational expressions to create a ZPK model. To do so, first type either:
- \(s=z p k(' s ')\) to specify a ZPK model using a rational function in the Laplace variable, s.
- z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a rational function in the discrete-time variable, \(z\).

Once you specify either of these variables, you can specify ZPK models directly as rational expressions in the variable s or \(z\) by entering your transfer function as a rational expression in either s or \(z\).

\section*{Conversion to Zero-Pole-Gain Form}
zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form. The output zsys is a ZPK object. By default, zpk uses zero to compute the zeros when converting from state-space to zero-pole-gain. Alternatively,
```

zsys = zpk(sys,'inv')

```
uses inversion formulas for state-space models to compute the zeros. This algorithm is faster but less accurate for high-order models with low gain at \(s=0\).

Variable
Selection
Selection

As for transfer functions, you can specify which variable to use in the display of zero-pole-gain models. Available choices include \(s\) (default) and \(\boldsymbol{p}\) for continuous-time models, and \(z\) (default), \(z^{-1}\), or \(q=z^{-1}\) for discrete-time models. Reassign the 'Variable' property to override the defaults. Changing the variable affects only the display of zero-pole-gain models.

\section*{Example}

\section*{Example 1}

Specify the following zero-pole-gain model.
\[
H(z)=\left[\begin{array}{c}
\frac{1}{z-0.3} \\
\frac{2(z+0.5)}{(z-0.1+j)(z-0.1-j)}
\end{array}\right]
\]

To do this, type
```

z = {[] ; -0.5}
p = {0.3 ; [0.1+i 0.1-i]}
k = [1 ; 2]
H = zpk(z,p,k,-1) % unspecified sample time

```

\section*{Example 2}

Convert the transfer function
```

h = tf([-10 20 0],[1 7 7 20 28 19 5])
Transfer function:
-10 s^2 + 20 s
s^5 + 7 s^4 + 20 s^3 + 28 s^2 + 19 s + 5

```
to zero-pole-gain form by typing
zpk(h)
Zero/pole/gain:
```

 -10 s (s-2)
 (s+1)^3 (s^2 + 4s + 5)

```

\section*{Example 3}

Create a discrete-time ZPK model from a rational expression in the variable \(z\), by typing
```

z = zpk('z',0.1);
H = (z+.1)*(z+.2)/(z^2+.6*z+.09)
Zero/pole/gain:
(z+0.1) (z+0.2)
(z+0.3)^2
Sampling time: 0.1

```
Algorithm zpk uses the MATLAB function roots to convert transfer functions and the functions zero and pole to convert state-space models.See Also
frd, get, set, ss, tf, zpkdata

\section*{Purpose \\ Syntax \\ Description}

Access zero-pole-gain data
[z,p,k] = zpkdata(sys)
[z,p,k,Ts,Td] = zpkdata(sys)
\([z, p, k]=z p k d a t a(s y s)\) returns the zeros \(z\), poles \(p\), and gain(s) \(k\) of the zero-pole-gain model sys. The outputs \(z\) and \(p\) are cell arrays with the following characteristics:
- \(z\) and \(p\) have as many rows as outputs and as many columns as inputs.
- The ( \(\mathrm{i}, \mathrm{j}\) ) entries \(\mathrm{z}\{\mathrm{i}, \mathrm{j}\}\) and \(\mathrm{p}\{\mathrm{i}, \mathrm{j}\}\) are the (column) vectors of zeros and poles of the transfer function from input \(j\) to output \(i\).

The output k is a matrix with as many rows as outputs and as many columns as inputs such that \(k(i, j)\) is the gain of the transfer function from input \(j\) to output \(i\). If sys is a transfer function or state-space model, it is first converted to zero-pole-gain form using zpk. See "LTI Properties" in the Control System Toolbox User's Guide for more information on the format of state-space model data.

For SISO zero-pole-gain models, the syntax
```

[z,p,k] = zpkdata(sys,'v')

```
forces zpkdata to return the zeros and poles directly as column vectors rather than as cell arrays (see example below).
[z, p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts and the input delay data Td. For continuous-time models, Td is a row vector with one entry per input channel ( \(\mathrm{Td}(\mathrm{j})\) indicates by how many seconds the \(j\) th input is delayed). For discrete-time models, Td is the empty matrix [] (see d2d for delays in discrete systems).

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts

Example
Given a zero-pole-gain model with two outputs and one input
```

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...
1
\#1: -------
(z-0.3)
2(z+0.5)
\#2:
(z^2 - 0.2z + 1.01)

```
Sampling time: unspecified
you can extract the zero/pole/gain data embedded in H with
```

[z,p,k] = zpkdata(H)
Z =
[0]
[-0.5000]
p =
[0.3000]
[2x1 double]
k =
1
2

```

To access the zeros and poles of the second output channel of H , get the content of the second cell in \(z\) and \(p\) by typing
```

z{2,1}
ans =
-0.5000
p{2,1}
ans =

```
\(0.1000+1.0000 i\)
\(0.1000-1.0000 i\)

See Also get, ssdata, tfdata, zpk

Block Reference

\section*{Introduction}

The Control System Toolbox provides the LTI System block for use with Simulink. Its reference page contains the following information:
- The block name and icon
- The purpose of the block
- A description of the block
- The block parameters and dialog box including a brief description of each parameter

\section*{Purpose \\ Description}

Import LTI System


The LTI System block imports linear, time-invariant (LTI) systems into Simulink.

The imported system must be proper. State-space models are always proper. SISO transfer functions or zero-pole-gain models are proper if the degree of their numerator is less than or equal to the degree of their denominator. MIMO transfer functions are proper if all their SISO entries are proper.

\section*{Dialog Box}


\section*{LTI system variable}

Enter your LTI model. This block supports state-space, zero/pole/gain, and transfer function formats. Your model can be discrete- or continuous-time.

\section*{Initial states (state-space only)}

If your model is in state-space format, you can specify the initial states in vector format. The default is zero for all states.

\section*{A}
acker 3-3
algebraic loop 2-89
append \(2-5\)
augstate 2-8

\section*{B}
balancing realizations 2-9
balreal 2-9
block diagram.. See model building bode (Bode plots) 2-18
bodemag (Bode magnitude plots) 1-6 2-23

\section*{C}
c2d 2-28
cancellation 1-9 2-187
canon 2-31
canonical realizations 1-8 2-31
care 2-34
cell array 2-108
chgunits 1-4 1-9 2-38
companion realizations 1-8 2-31
comparing models 2-18
concatenation, model
LTI arrays 1-11 2-291
connect 2-38 2-40
connection
feedback 1-5 2-86
parallel 1-5 2-224
series 1-5 2-245
continuous-time 1-10 2-143
conversion to.. See conversion, model
random model 2-243
controllability
matrix (ctrb) 1-8 2-49
staircase form 2-51
conversion, model
between model types 2-280
continuous to discrete (c2d) 1-4 2-28
discrete to continuous (d2c) 1-4 2-55
with negative real poles \(2-56\)
resampling
discrete models 1-4 2-58
state-space, to 2-280
covar 2-46
covariance
output 1-6 2-46
state 1-6 2-46
crossover frequencies allmargin 1-6 2-4
margin 2-184
ctrb 2-49
ctrbf 2-51

\section*{D}
d2c 2-55
d2d 2-58
damp 2-60
damping 1-5 2-60
dare 2-62
dcgain 2-64
dead time. See delays
delay2z 1-10 2-66
delays
combining 1-10 2-310
conversion 1-10 2-66 to 2-67
delay2z 1-10 2-66
delayss 1-10 2-67
existence of, test for 2-115
hasdelay 2-115
I/O 2-249
input 2-249
output 2-250
delayss 1-10 2-67
denominator
common denominator 2-300
property 2-252
specification 2-90
design
Kalman estimator 1-8 2-148
LQG 1-8 2-69 2-157
pole placement 1-7 2-226
regulators 1-7 to 1-8 2-157 2-234
state estimator 1-8 2-148
diagonal realizations 1-8 2-31
digital filter
specification 2-90
Dirac impulse 2-124
discrete-time models 1-10 2-143
equivalent continuous poles 2-60
frequency 2-22
Kalman estimator 1-8 2-148
random 2-74
discrete-time random models 2-74
discretization 1-4 2-28
available methods 2-28
dlqr 2-69
dlyap 2-71
drmodel 2-74
drss 2-74
dsort 2-76
DSP convention 2-90
dss 2-77

\section*{E}
esort 2-80
estim 2-81
estimator 1-8 2-148
current 2-149
discrete 1-8 2-148
discrete for continuous plant 1-8 2-152
evalfr 2-83

\section*{F}
feedback 1-5 2-86
algebraic loop 2-89
negative 2-86
positive 2-86
filt 2-90 2-94 2-97
first-order hold (FOH) 2-28
frd 2-94
FRD (frequency response data) objects 2-94
data 2-97
frdata 2-97
frequencies
units, conversion 1-4 1-9 2-38
singular value plots 2-263
frdata 2-97
freqresp 1-6 2-99
frequency
crossover 1-7 to 1-8 2-184
for discrete systems 2-22
logarithmically spaced frequencies \(2-18\)
natural 1-5 2-60
Nyquist 2-22
frequency response
at single frequency (evalfr) 1-6 2-83
Bode plot 1-6 1-12 2-18 2-24
discrete-time frequency 2-22
frearesp 1-6 2-99
magnitude 2-18
MIMO 2-18
Nichols chart (ngrid) 1-9 2-197
Nichols plot 1-7 1-9 2-199
phase 2-18
plotting 2-18
viewing the gain and phase margins 2-185

\section*{G}
gain
low frequency (DC) 1-5 2-64
state-feedback gain 1-8 2-69
gain margins 2-18
gensig 2-105
get 1-3 2-107
gram 2-113
gramian (gram) 2-9

\section*{H}

Hamiltonian matrix and pencil 2-34 hasdelay 2-115

\section*{I}

I/O
delays 2-249
dimensions 1-11 2-275
impulse 2-124
impulse response 1-6 2-124
inheritance 2-77
initial 1-6 2-130
initial condition 1-6 2-130
innovation 2-149
input
delays 2-249
Dirac impulse 2-124
names 2-250
See also InputName
number of inputs 1-11 2-275
pulse 2-105
sine wave 2-105
square wave \(2-105\)
interconnection.. See model building
inv 2-136
inversion 1-11 2-136
limitations 2-137
isct 2-143
isdt 2-143
isempty 2-144
isproper 2-145
issiso 2-147

\section*{K}
kalman 2-148
Kalman estimator
current 2-149
discrete 1-8 2-148
innovation 2-149
steady-state 1-8 2-148
kalmd 2-152

\section*{L}

LFT (linear-fractional transformation) 2-154
LQG (linear quadratic-gaussian) method continuous LQ regulator 1-8 2-161
cost function 2-69
current regulator 2-158
discrete LQ regulator 1-8 2-69
Kalman state estimator 1-8 2-148
LQ-optimal gain 1-8 2-161
optimal state-feedback gain 1-8 2-161
regulator 1-8 2-157
lqr 2-161
lqrd 2-163
lqry 2-165
lsim 2-166
LTI arrays
building 1-11 2-291
concatenation 1-11 2-291
shape, changing 2-237
stack 1-11 2-291
LTI models
comparing multiple models 2-18
dimensions 2-196
discrete 1-10 2-143
discrete random 2-74
empty 1-10 2-144
frd 2-94
model order reduction 1-9 2-189
model order reduction (balanced realization) 2-10
ndims 2-196
norms 1-5 2-204
proper transfer function 1-10 2-145
random 2-243
second-order 2-219
SISO 1-10 2-147
ss 1-4 2-279
LTI properties
accessing property values (get) 1-3 2-107
admissible values 2-248
displaying properties 2-107
inheritance 2-77
property names 2-107 2-247
property values 2-107 2-247
setting 1-3 2-247
LTI Viewer 1-6 to 1-7 2-178
ltiview 2-178
lyap 2-181
Lyapunov equation 2-48 2-114
continuous 1-12 2-181
discrete 1-12 2-71

\section*{M}
margin 2-184
margins, gain and phase \(2-18\)
matched pole-zero 2-28
MIMO 2-124
minreal 2-187
model building
appending LTI models 2-5
feedback connection 1-5 2-86
modeling block diagrams (connect) 1-4 2-40
parallel connection 1-5 2-224
series connection 1-5 2-245
model order reduction 1-9 2-189
balanced realization \(2-10\)
modred 2-189

\section*{N}
natural frequency 1-5 2-60
ndims 2-196
ngrid 2-197
nichols 2-199
Nichols
chart 1-9 2-197
plot (nichols) 1-7 1-9 2-199
noise
measurement 2-81
process 2-81
white 1-6 2-46
norm 2-204
norms of LTI systems (norm) 1-5 2-204
numerator
property 2-252
specification 2-90
value \(2-108\)
nyquist 2-208
Nyquist
frequency \(2-22\)

\section*{0}
observability
matrix (ctrb) 1-9 2-215
staircase form 2-217
obsv 2-215
obsvf 2-217
operations on LTI models
append \(2-5\)
augmenting state with outputs 1-8 2-8
diagonal building 2-5
inversion 1-11 2-136
sorting the poles 1-5 2-76
ord2 2-219
output 1-11 2-275
covariance 1-6 2-46
delays 2-250
names 2-250
See also OutputName
number of outputs 1-11 2-275

\section*{P}
pade 2-221
parallel 2-224
parallel connection 1-5 2-224
phase margins 2-18
place 2-226
plotting
multiple systems 2-18
Nichols chart (ngrid) 1-9 2-197
s-plane grid (sgrid) 2-261
z-plane grid (zgrid) 2-312
pole 2-228
pole placement 1-7 2-226
pole-zero
cancellation 1-9 2-187
map (pzmap) 1-5 2-229
poles
computing 1-5 2-228
damping 1-5 2-60
equivalent continuous poles 2-60
multiple 2-228
natural frequency 1-5 2-60
pole-zero map 1-5 2-229
\(s\)-plane grid (sgrid) 2-261
sorting by magnitude (dsort) 1-5 2-76
\(z\)-plane grid (zgrid) 2-312
proper transfer function 1-10 2-145
pulse 2-105
pzmap 2-229

\section*{R}
random models 2-243
realization
state coordinate transformation 1-9 2-284
state coordinate transformation
(canonical) 2-32
realizations 2-280
balanced 2-9
canonical 1-8 2-31
companion form 1-8 2-31
minimal 1-9 2-187
modal form 1-8 2-31
reduced-order models 1-9 2-189
balanced realization \(2-10\)
regulation 1-7 2-234
resampling (d2d) 1-4 2-58
reshape 2-237
Riccati equation
continuous (care) 1-12 2-34
discrete (dare) 1-12 2-62
for LQG design 2-150
H-like 2-36
rlocus 2-238
rmodel 2-243
root locus
plot (rlocus) 1-7 2-238
rss 2-243

\section*{s}
sample time
resampling 1-4 2-58
setting 2-249
unspecified 2-22
second-order model 2-219
series 2-245
series connection 1-5 2-245
set 1-3 2-247
simulation of linear systems.. See time response
sine wave 2-105
SISO 1-10 2-147
SISO Design Tool 1-7 2-271
square wave \(2-105\)
ss 1-4 2-279
stability margins
margin 1-7 to 1-8 2-184
pole 1-5 2-228
pzmap 1-5 2-229
stabilizable 2-37
stack 1-11 2-291
state
augmenting with outputs 1-8 2-8
covariance 1-6 2-46
discrete estimator 1-8 2-152
estimator 1-8 2-148
feedback 1-8 2-69
names 2-251
number of states 1-11 2-275
transformation 1-9 2-284
transformation (canonical) 2-32
uncontrollable 2-187
unobservable 2-187 2-217
state-space models
balancing 2-9
descriptor 2-77
discrete random discrete-time models 2-74
dss 2-77
initial condition response 1-6 2-130
random
continuous-time 2-243
realizations 2-280
specification 1-4 2-279
ss 1-4 2-279
step response 1-6 2-292
Sylvester equation 1-12 2-181
symplectic pencil 2-63

\section*{T}
time response
final time 2-124
impulse response (impulse) 1-6 2-124
initial condition response (initial) 1-6 2-130
MIMO 2-124
response to arbitrary inputs (lsim) 2-166
step response (step) 1-6 2-292
to white noise 1-6 2-46
totaldelay 1-10 2-310
transfer functions
common denominator 2-300
discrete-time 2-90
discrete-time random 2-74
DSP convention 2-90
filt 2-90
MIMO 2-299
quick data retrieval (tfdata) 1-4 2-307
random 2-243
static gain 2-300
transmission zeros.. See zeros
triangle approximation 2-28
Tustin approximation 2-28
with frequency prewarping 2-28
tzero. . See zero

\section*{Z}
zero 2-311
zero-order hold (ZOH) 2-28
zero-pole-gain (ZPK) models
MIMO 2-315
quick data retrieval (zpkdata) 1-4 2-319
static gain 2-315
zeros
computing 2-311
pole-zero map 1-5 2-229
transmission 2-311

\section*{Index-6}```


[^0]:    Algorithm
    For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s) and denominator(s) at the specified frequency points. For continuous-time state-space models $(A, B, C, D)$, the frequency response is

    $$
    D+C(j \omega-A)^{-1} B, \quad \omega=\omega_{1}, \ldots, \omega_{N}
    $$

    For efficiency, $A$ is reduced to upper Hessenberg form and the linear equation $(j \omega-A) X=B$ is solved at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. See [1] for more details on this technique.

    Diagnostics

    References

    See Also

    If the system has a pole on the $j \omega$ axis (or unit circle in the discrete-time case) and $w$ happens to contain this frequency point, the gain is infinite, $j \omega I-A$ is singular, and freqresp produces the following warning message.

    ```
 Singularity in freq. response due to jw-axis or unit circle pole.
    ```

    [1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

